Advertisement

Solid-Binding Peptides: Immobilisation Strategies for Extremophile Biocatalysis in Biotechnology

  • Andrew Care
  • Peter L. Bergquist
  • Anwar Sunna
Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB, volume 1)

Abstract

Solid-binding peptides (SBP’s) have the ability to bind with high affinity and selectivity to the surfaces of a diverse range of solid materials. They offer a simple and versatile method for the directed immobilisation and orientation of proteins and enzymes onto solid supports without impeding their catalytic functionality. This chapter describes SBPs and their potential applications in the isolation, purification and reuse of thermostable enzymes using readily-available and inexpensive silica-based matrices. We suggest some prospects for the introduction of thermostable enzymes immobilised onto solid matrices using SBPs into several of areas of applied biotechnology. In particular, we outline conceptual applications for immobilised enzymes in cell-free synthetic biology, biofuels production and in gas phase biocatalysis for the capture of carbon dioxide.

Keywords

Enzyme Immobilisation Synthetic Biology Carbon Capture Free Enzyme Natural Zeolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdelhamid MA, Motomura K, Ikeda T et al (2014) Affinity purification of recombinant proteins using a novel silica-binding peptide as a fusion tag. Appl Microbiol Biotechnol 98(12):5677–5684PubMedCrossRefGoogle Scholar
  2. Azari F, Nemat-Gorgani M (1999) Reversible denaturation of carbonic anhydrase provides a method for its adsorptive immobilization. Biotechnol Bioeng 62(2):193–199PubMedCrossRefGoogle Scholar
  3. Bachas-Daunert P, Sellers Z, Wei Y (2009) Detection of halogenated organic compounds using immobilized thermophilic dehalogenase. Anal Bioanal Chem 395(4):1173–1178PubMedCrossRefGoogle Scholar
  4. Ball P (2001) Life’s lessons in design. Nature 409(6818):413–416PubMedCrossRefGoogle Scholar
  5. Bandlish RK, Michael Hess J, Epting KL et al (2002) Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnol Bioeng 80(2):185–194PubMedCrossRefGoogle Scholar
  6. Baneyx F, Schwartz DT (2007) Selection and analysis of solid-binding peptides. Curr Opin Biotechnol 18(4):312–317PubMedCrossRefGoogle Scholar
  7. Basen M, Rhaesa AM, Kataeva I et al (2014) Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol 152:384–392PubMedCrossRefGoogle Scholar
  8. Bell PJL, Sunna A, Gibbs MD et al (2002) Prospecting for novel lipase genes using PCR. Microbiology 148(8):2283–2291PubMedCrossRefGoogle Scholar
  9. Belzil A, Parent C (2005) Methods of chemical immobilization of an enzyme on a solid support. Biochem Cell Biol 83(1):70–77PubMedCrossRefGoogle Scholar
  10. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26(10):566–572PubMedCrossRefGoogle Scholar
  11. Blanco RM, Terreros P, Fernández-Pérez M et al (2004) Functionalization of mesoporous silica for lipase immobilization: characterization of the support and the catalysts. J Mol Catal B: Enzym 30(2):83–93CrossRefGoogle Scholar
  12. Blumer-Schuette SE, Brown SD, Sander KB et al (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448PubMedCrossRefGoogle Scholar
  13. Bolivar JM, Rocha-Martin J, Mateo C et al (2009) Coating of soluble and immobilized enzymes with ionic polymers: full stabilization of the quaternary structure of multimeric enzymes. Biomacromolecules 10(4):742–747PubMedCrossRefGoogle Scholar
  14. Boone CD, Gill S, Habibzadegan A et al (2013) Carbonic anhydrase: an efficient enzyme with possible global implications. Int J Chem Eng 2013:6CrossRefGoogle Scholar
  15. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639–1650PubMedCrossRefGoogle Scholar
  16. Branston S, Stanley E, Ward J et al (2013) Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol Bioprocess Eng 18(3):560–566CrossRefGoogle Scholar
  17. Breck DW (1973) Zeolite molecular sieves: structure, chemistry, and use. Wiley, New YorkGoogle Scholar
  18. Brown S (1992) Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. Proc Natl Acad Sci U S A 89(18):8651–8655PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15(3):269–272PubMedCrossRefGoogle Scholar
  20. Brown S, Sarikaya M, Johnson E (2000) A genetic analysis of crystal growth. J Mol Biol 299(3):725–735PubMedCrossRefGoogle Scholar
  21. Camarero JA (2008) Recent developments in the site-specific immobilization of proteins onto solid supports. Pept Sci 90(3):450–458CrossRefGoogle Scholar
  22. Cao L (2006) Carrier-bound immobilized enzymes: principles, application and design. Wiley-VCH, WeinheimGoogle Scholar
  23. Capasso C, De Luca V, Carginale V et al (2012) Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. J Enzyme Inhib Med Chem 27(6):892–897PubMedCrossRefGoogle Scholar
  24. Care A, Chi F, Bergquist P et al (2014a) Biofunctionalization of silica-coated magnetic particles mediated by a peptide. J Nanopart Res 16(8):1–9CrossRefGoogle Scholar
  25. Care A, Nevalainen H, Bergquist P et al (2014b) Effect of Trichoderma reesei proteinases on the affinity of an inorganic-binding peptide. Appl Biochem Biotechnol 173(8):2225–2240Google Scholar
  26. Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33(5):259–268Google Scholar
  27. Çaykara T, Güven O (1998) Effect of preparation methods on thermal properties of poly(acrylic acid)/silica composites. J Appl Polym Sci 70(5):891–895Google Scholar
  28. Cetinel S, Caliskan HB, Yucesoy DT et al (2013) Addressable self-immobilization of lactate dehydrogenase across multiple length scales. Biotechnol J 8(2):262–272PubMedCrossRefGoogle Scholar
  29. Charbit A, Boulain JC, Ryter A et al (1986) Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J 5(11):3029–3037PubMedPubMedCentralGoogle Scholar
  30. Chen AY, Deng Z, Billings AN et al (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater 13(5):515–523PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443PubMedCrossRefGoogle Scholar
  32. Chhabra SR, Shockley KR, Ward DE et al (2002) Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 68(2):545–554PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chiu CY, Li Y, Huang Y (2010) Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide. Nanoscale 2(6):927–930PubMedCrossRefGoogle Scholar
  34. Cho EJ, Jung S, Kim HJ et al (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48(6):886–888CrossRefGoogle Scholar
  35. Coil DA, Badger JH, Forberger HC et al (2014) Complete genome sequence of the extreme thermophile Dictyoglomus thermophilum H-6–12. Genome Announc 2(1):e00109–e00114PubMedPubMedCentralCrossRefGoogle Scholar
  36. Collino S, Evans JS (2008) Molecular specifications of a mineral modulation sequence derived from the aragonite-promoting protein n16. Biomacromolecules 9(7):1909–1918PubMedCrossRefGoogle Scholar
  37. Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 49(4):326–346PubMedCrossRefGoogle Scholar
  38. Cowan DA, Daniel RM, Morgan HW (1987) Some observations on the inhibition and activation of a thermophilic protease. Int J Biochem 19(5):483–486PubMedCrossRefGoogle Scholar
  39. Coyle BL, Baneyx F (2014) A cleavable silica-binding affinity tag for rapid and inexpensive protein purification. Biotechnol Bioeng 111(10):2019–2026PubMedCrossRefGoogle Scholar
  40. Cripps RE, Eley K, Leak DJ et al (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11(6):398–408PubMedCrossRefGoogle Scholar
  41. Cui Y, Kim SN, Jones SE et al (2010) Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett 10(11):4559–4565PubMedCrossRefGoogle Scholar
  42. Dang X, Yi H, Ham M-H et al (2011) Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol 6(6):377–384PubMedCrossRefGoogle Scholar
  43. Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dong Q, Yan X, Zheng M et al (2014) Immobilization of a thermostable inorganic pyrophosphatase from the archaeon Pyrococcus furiosus onto amino-functionalized silica beads. J Appl Polym Sci 131(17):8669–8675Google Scholar
  45. Dunn RV, Daniel RM (2004) The use of gas–phase substrates to study enzyme catalysis at low hydration. Phil Trans R Soc Lond 359(1448):1309–1320CrossRefGoogle Scholar
  46. Estephan E, Saab MB, Martin M et al (2011) Phages recognizing the indium nitride semiconductor surface via their peptides. J Pept Sci 17(2):143147CrossRefGoogle Scholar
  47. Evans JS, Samudrala R, Walsh TR et al (2008) Molecular design of inorganic binding polypeptides. MRS Bull 33:514–518CrossRefGoogle Scholar
  48. Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol 45(6–7):405–418CrossRefGoogle Scholar
  49. Filho M, Pessela BC, Mateo C et al (2008) Immobilization–stabilization of an α-galactosidase from Thermus sp. strain T2 by covalent immobilization on highly activated supports: selection of the optimal immobilization strategy. Enzyme Microb Technol 42(3):265–271CrossRefGoogle Scholar
  50. Fischer L, Bromann R, Kengen SW et al (1996) Catalytical potency of beta-glucosidase from the extremophile Pyrococcus furiosus in glucoconjugate synthesis. Biotechnology (NY) 14(1):88–91CrossRefGoogle Scholar
  51. Fisher Z, Boone CD, Biswas SM et al (2012) Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Eng Des Sel 25(7):347–355PubMedPubMedCentralCrossRefGoogle Scholar
  52. Forbes LM, Goodwin AP, Cha JN (2010) Tunable size and shape control of platinum nanocrystals from a single peptide sequence. Chem Mater 22(24):6524–6528CrossRefGoogle Scholar
  53. Furlong D (1982) Adsorption of Tris(2,2′-bipyridine)ruthenium(II) cations at silica/aqueous solution interfaces. Aust J Chem 35(5):911–917CrossRefGoogle Scholar
  54. Gabryelczyk B, Szilvay GR, Salomaki M et al (2013) Selection and characterization of peptides binding to diamond-like carbon. Colloids Surf B Biointerfaces 110:66–73PubMedCrossRefGoogle Scholar
  55. Gabryelczyk B, Szilvay GR, Linder MB (2014) The structural basis for function in diamond-like carbon binding peptides. Langmuir 30(29):8798–8802PubMedCrossRefGoogle Scholar
  56. Gaffney D, Cooney J, Magner E (2012) Modification of mesoporous silicates for immobilization of enzymes. Top Catal 55(16–18):1101–1106CrossRefGoogle Scholar
  57. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R et al (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353(16):2885–2904CrossRefGoogle Scholar
  58. Gaskin DJH, Starck K, Vulfson EN (2000) Identification of inorganic crystal-specific sequences using phage display combinatorial library of short peptides: a feasibility study. Biotechnol Lett 22(15):1211–1216CrossRefGoogle Scholar
  59. Ghose S, McNerney TM, Hubbard B (2004) Preparative protein purification on underivatized silica. Biotechnol Bioeng 87(3):413–423PubMedCrossRefGoogle Scholar
  60. Gibbs MD, Reeves RA, Sunna A, Bergquist PL (1999) Sequencing and expression of a β-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39(6):351–357PubMedCrossRefGoogle Scholar
  61. Goede K, Busch P, Grundmann M (2004) Binding specificity of a peptide on semiconductor surfaces. Nano Lett 4(11):2115–2120CrossRefGoogle Scholar
  62. Goward CR, Murphy JP, Atkinson T et al (1990) Expression and purification of a truncated recombinant streptococcal protein G. Biochem J 267(1):171–177PubMedPubMedCentralCrossRefGoogle Scholar
  63. Greiner L, Schroder I, Muller DH et al (2003) Utilization of adsorption effects for the continuous reduction of NADP+ with molecular hydrogen by Pyrococcus furiosus hydrogenase. Green Chem 5(6):697–700CrossRefGoogle Scholar
  64. Gülay S, Şanlı-Mohamed G (2012) Immobilization of thermoalkalophilic recombinant esterase enzyme by entrapment in silicate coated Ca-alginate beads and its hydrolytic properties. Int J Biol Macromol 50(3):545–551PubMedCrossRefGoogle Scholar
  65. Gungormus M, Fong H, Kim IW et al (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9(3):966–973PubMedCrossRefGoogle Scholar
  66. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468PubMedCrossRefGoogle Scholar
  67. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas: benefits and challenges. Chem Soc Rev 42(15):6277–6289PubMedCrossRefGoogle Scholar
  68. Hasan MMF, First EL, Floudas CA (2013) Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. Phys Chem Chem Phys 15(40):17601–17618Google Scholar
  69. Heinz H, Farmer BL, Pandey RB et al (2009) Nature of molecular interactions of peptides with gold, palladium and pd-au bimetal surfaces in aqueous solution. J Am Chem Soc 131(28):9704–9714PubMedCrossRefGoogle Scholar
  70. Hickey AM, Ngamsom B, Wiles C et al (2009) A microreactor for the study of biotransformations by a cross-linked γ-lactamase enzyme. Biotechnol J 4(4):510–516PubMedCrossRefGoogle Scholar
  71. Hidalgo A, Betancor L, Lopez-Gallego F et al (2003) Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions: structural stabilization of a multimeric enzyme. Enzyme Microb Technol 33(2–3):278–285CrossRefGoogle Scholar
  72. Hnilova M, Oren EE, Seker UOS et al (2008) Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir 24(21):12440–12445PubMedCrossRefGoogle Scholar
  73. Ho L-F, Li S-Y, Lin S-C et al (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents. Process Biochem 39(11):1573–1581CrossRefGoogle Scholar
  74. Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47(5):1562–1568CrossRefGoogle Scholar
  75. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14(3):261–269PubMedCrossRefGoogle Scholar
  76. Hoess RH (2001) Protein design and phage display. Chem Rev 101(10):3205–3218PubMedCrossRefGoogle Scholar
  77. Hollinshead W, He L, Tang YJ (2014) Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol 5:344PubMedPubMedCentralCrossRefGoogle Scholar
  78. Huang Y, Chiang C-Y, Lee SK et al (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5(7):1429–1434PubMedCrossRefGoogle Scholar
  79. Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47(45):8582–8594CrossRefGoogle Scholar
  80. Hui KS, Chao CYH (2008) Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash. Environ Sci Technol 42(19):7392–7397PubMedCrossRefGoogle Scholar
  81. Ikeda T, Kuroda A (2011) Why does the silica-binding protein “Si-tag” bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces. Colloids Surf B Biointerfaces 86(2):359–363PubMedCrossRefGoogle Scholar
  82. Ikeda T, Hata Y, Ninomiya K-i et al (2009) Oriented immobilization of antibodies on a silicon wafer using Si-tagged protein A. Anal Biochem 385(1):132–137PubMedCrossRefGoogle Scholar
  83. Inoue I, Watanabe K, Yamauchi H et al (2014) Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells. ChemSusChem 7(10):2805–2810PubMedCrossRefGoogle Scholar
  84. Johnson A, Zawadzka A, Deobald L et al (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10(6):1009–1025CrossRefGoogle Scholar
  85. Jørgensen F, Hansen OC, Stougaard P (2004) Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterisation of a thermostable l-arabinose isomerase from Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 64(6):816–822PubMedCrossRefGoogle Scholar
  86. Kacar T, Ray J, Gungormus M et al (2009a) Quartz binding peptides as molecular linkers towards fabricating multifunctional micropatterned substrates. Adv Mater 21(3):295–299CrossRefGoogle Scholar
  87. Kacar T, Zin MT, So C et al (2009b) Directed self-immobilization of alkaline phosphatase on micro-patterned substrates via genetically fused metal-binding peptide. Biotechnol Bioeng 103(4):696–705PubMedCrossRefGoogle Scholar
  88. Kanbar B, Ozdemir E (2010) Thermal stability of carbonic anhydrase immobilized within polyurethane foam. Biotechnol Prog 26(5):1474–1480PubMedCrossRefGoogle Scholar
  89. Kataeva I, Foston MB, Yang S-J et al (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6(7):2186–2195CrossRefGoogle Scholar
  90. Khare SD, Fleishman SJ (2013) Emerging themes in the computational design of novel enzymes and protein–protein interfaces. FEBS Lett 587(8):1147–1154PubMedCrossRefGoogle Scholar
  91. Kim J, Lin L-C, Swisher JA et al (2012) Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J Am Chem Soc 134(46):18940–18943PubMedCrossRefGoogle Scholar
  92. Kjaergaard K, Sørensen JK, Schembri MA et al (2000) Sequestration of zinc oxide by fimbrial designer chelators. Appl Environ Microbiol 66(1):10–14PubMedPubMedCentralCrossRefGoogle Scholar
  93. Klint D, Eriksson H (1997) Conditions for the adsorption of proteins on ultrastable zeolite Y and its use in protein purification. Protein Expr Purif 10(2):247–255PubMedCrossRefGoogle Scholar
  94. Ko S, Park TJ, Kim H-S et al (2009) Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors. Biosens Bioelectron 24(8):2592–2597PubMedCrossRefGoogle Scholar
  95. Kogel JE, Trivedi NC, Barker JM et al (2006) Industrial minerals & rocks: commodities, markets, and uses, 7th edn. Society for Mining, Metallurgy, and Exploration, LittletonGoogle Scholar
  96. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11(5):499–507PubMedCrossRefGoogle Scholar
  97. Kress J, Zanaletti R, Amour A et al (2002) Enzyme accessibility and solid supports: which molecular weight enzymes can be used on solid supports? An investigation using confocal Raman microscopy. Chem Eur J 8(16):3769–3772PubMedCrossRefGoogle Scholar
  98. Kulp JL, Shiba K, Evans JS (2005) Probing the conformational features of a phage display polypeptide sequence directed against single-walled carbon nanohorn surfaces. Langmuir 21(25):11907–11914PubMedCrossRefGoogle Scholar
  99. Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288–290PubMedCrossRefGoogle Scholar
  100. Lamare S, Legoy M-D (1993) Biocatalysis in the gas phase. Trends Biotechnol 11(10):413–418PubMedCrossRefGoogle Scholar
  101. Lee SW, Mao C, Flynn CE et al (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895PubMedCrossRefGoogle Scholar
  102. Lehn C, Schmidt H-L (1997) Stability and stabilization of enzymes from mesophilic and thermophilic organisms in respect to their use in FIA-systems for the determination of L-lactate and acetate. J Chem Technol Biotechnol 69(2):161–166CrossRefGoogle Scholar
  103. Li CM, Botsaris GD, Kaplan DL (2002) Selective in vitro effect of peptides on calcium carbonate crystallization. Cryst Growth Des 2(5):387–393CrossRefGoogle Scholar
  104. Li YJ, Whyburn GB, Huang Y (2009) Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. J Am Chem Soc 131(44):15998–15999PubMedCrossRefGoogle Scholar
  105. Lichty JJ, Malecki JL, Agnew HD et al (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41(1):98–105PubMedCrossRefGoogle Scholar
  106. Lind PA, Daniel RM, Monk C et al (2004) Esterase catalysis of substrate vapour: enzyme activity occurs at very low hydration. Biochim Biophys Acta 1702(1):103–110PubMedCrossRefGoogle Scholar
  107. Love DR, Fisher R, Bergquist PL (1988) Sequence structure and expression of a cloned β-glucosidase gene from an extreme thermophile. Mol Gen Genet 213(1):84–92PubMedCrossRefGoogle Scholar
  108. Lu Y, Zhao J, Zhang R et al (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photon 8(1):32–36CrossRefGoogle Scholar
  109. Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedPubMedCentralCrossRefGoogle Scholar
  110. Magner E (2013) Immobilisation of enzymes on mesoporous silicate materials. Chem Soc Rev 42(15):6213–6222PubMedCrossRefGoogle Scholar
  111. Masica DL, Schrier SB, Specht EA et al (2010) De novo design of peptide-calcite biomineralization systems. J Am Chem Soc 132:12252–12262PubMedCrossRefGoogle Scholar
  112. Miroliaei M (2007) Studies on the activity and stability of immobilized thermophilic alcohol dehydrogenase. Sci Iranica 14(2):112–117Google Scholar
  113. Morris DD, Gibbs MD, Chin CW et al (1998) Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64(5):1759–1765PubMedPubMedCentralGoogle Scholar
  114. Mueller S, Coleman JR, Wimmer E (2009) Putting synthesis into biology: a viral view of genetic engineering through de novo gene and genome synthesis. Chem Biol 16(3):337–347PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mullaney PF (1966) Dry thermal inactivation of trypsin and ribonuclease. Nature 210(5039):953PubMedCrossRefGoogle Scholar
  116. Naber JE, de Jong KP, Stork WHJ et al (1994) Industrial applications of zeolite catalysis. In: Weitkamp J, Karge HG, Pfeifer H, Hölderich W (eds) Studies in surface science and catalysis, vol 84. Elsevier, Amsterdam, pp 2197–2219Google Scholar
  117. Naik RR, Brott LL, Clarson SJ et al (2002a) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2(1):95–100PubMedCrossRefGoogle Scholar
  118. Naik RR, Stringer SJ, Agarwal G et al (2002b) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172PubMedCrossRefGoogle Scholar
  119. Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  120. Ngamsom B, Hickey AM, Greenway GM et al (2010) Development of a high throughput screening tool for biotransformations utilising a thermophilic l-aminoacylase enzyme. J Mol Catal B: Enzym 63(1–2):81–86CrossRefGoogle Scholar
  121. Nochomovitz R, Amit M, Matmor M et al (2010) Bioassisted multi-nanoparticle patterning using single-layer peptide templates. Nanotechnology 21(14):145305PubMedCrossRefGoogle Scholar
  122. Notman R, Oren EE, Tamerler C et al (2010) Solution study of engineered quartz binding peptides using replica exchange molecular dynamics. Biomacromolecules 11(12):3266–3274Google Scholar
  123. Nygaard S, Wendelbo R, Brown S (2002) Surface-specific zeolite-binding proteins. Adv Mater 14(24):1853–1856CrossRefGoogle Scholar
  124. Opwis K, Knittel D, Bahners T et al (2005) Photochemical enzyme immobilization on textile carrier materials. Eng Life Sci 5(1):63–67CrossRefGoogle Scholar
  125. Opwis K, Straube T, Kiehl K et al (2014) Various strategies for the immobilization of biocatalysts on textile carrier materials. Chem Eng Trans 38:223–238Google Scholar
  126. Oren EE, Tamerler C, Sahin D et al (2007) A novel knowledge-based approach to design inorganic binding peptides. Bioinformatics 23(21):2816–2822Google Scholar
  127. Oren EE, Notman R, Kim IW et al (2010) Probing the molecular mechanisms of quartz-binding peptides. Langmuir 26:11003–11009PubMedCrossRefGoogle Scholar
  128. Palomo JM, Segura RL, Mateo C et al (2004) Improving the activity of lipases from thermophilic organisms at mesophilic temperatures for biotechnology applications. Biomacromolecules 5(1):249–254PubMedCrossRefGoogle Scholar
  129. Park TJ, Zheng S, Kang YJ et al (2009) Development of a whole-cell biosensor by cell surface display of a gold-binding polypeptide on the gold surface. FEMS Microbiol Lett 293(1):141–147PubMedCrossRefGoogle Scholar
  130. Pasunooti S, Surya W, Tan SN et al (2010) Sol–gel immobilization of a thermophilic diguanylate cyclase for enzymatic production of cyclic-di-GMP. J Mol Catal B: Enzym 67(1–2):98–103CrossRefGoogle Scholar
  131. Patolsky F, Zheng G, Lieber CM (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1(4):1711–1724PubMedCrossRefGoogle Scholar
  132. Pender MJ, Sowards LA, Hartgerink JD et al (2006) Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett 6(1):40–44PubMedCrossRefGoogle Scholar
  133. Pessela BCC, Mateo C, Fuentes M et al (2004) Stabilization of a multimeric β-galactosidase from Thermus sp. strain T2 by immobilization on novel heterofunctional epoxy supports plus aldehyde-dextran cross-linking. Biotechnol Prog 20(1):388–392PubMedCrossRefGoogle Scholar
  134. Pierre AC (2004) The sol-gel encapsulation of enzymes. Biocatal Biotransfor 22(3):145–170CrossRefGoogle Scholar
  135. Pierre AC (2012) Enzymatic carbon dioxide capture. ISRN Chem Eng 2012:22CrossRefGoogle Scholar
  136. Piller K, Daniel RM, Petach HH (1996) Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130 degrees C. Biochim Biophys Acta 1292(1):197–205PubMedCrossRefGoogle Scholar
  137. Popat A, Hartono SB, Stahr F et al (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3(7):2801–2818PubMedCrossRefGoogle Scholar
  138. Puddu V, Perry CC (2012) Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6(7):6356–6363PubMedCrossRefGoogle Scholar
  139. Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31(4):215–216PubMedCrossRefGoogle Scholar
  140. Raghuvanshi S, Gupta R (2010) Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Pept Lett 17(11):1412–1416PubMedCrossRefGoogle Scholar
  141. Raia CA, D’Auria S, Guagliardi A et al (1995) Characterization of redox proteins from extreme thermophilic archaebacteria: studies on alcohol dehydrogenase and thioredoxins. Biosens Bioelectron 10(1–2):135–140CrossRefGoogle Scholar
  142. Rhodes CJ (2010) Properties and applications of zeolites. Sci Prog 93(Pt 3):223–284PubMedCrossRefGoogle Scholar
  143. Rocha-Martin J, Vega DE, Cabrera Z et al (2009) Purification, immobilization and stabilization of a highly enantioselective alcohol dehydrogenase from Thermus thermophilus HB27 cloned in E. coli. Process Biochem 44(9):1004–1012CrossRefGoogle Scholar
  144. Roy MD, Stanley SK, Amis EJ et al (2008) Identification of a highly specific hydroxyapatite-binding peptide using phage display. Adv Mater 20(10):1830–1836CrossRefGoogle Scholar
  145. Sano K-I, Miura A, Yoshii S et al (2013) Nonvolatile flash memory based on biologically integrated hierarchical nanostructures. Langmuir 29(40):12483–12489PubMedCrossRefGoogle Scholar
  146. Sapsford KE, Algar WR, Berti L et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074PubMedCrossRefGoogle Scholar
  147. Sarikaya M, Tamerler C, Jen AKY et al (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585PubMedCrossRefGoogle Scholar
  148. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511PubMedCrossRefGoogle Scholar
  149. Savile CK, Lalonde JJ (2011) Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 22(6):818–823PubMedCrossRefGoogle Scholar
  150. Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99(2):6451–6455PubMedPubMedCentralCrossRefGoogle Scholar
  151. Seker UOS, Wilson B, Dincer S et al (2007) Adsorption behavior of linear and cyclic genetically engineered platinum binding peptides. Langmuir 23(15):7895–7900PubMedCrossRefGoogle Scholar
  152. Serizawa T, Techawanitchai P, Matsuno H (2007) Isolation of peptides that can recognize syndiotactic polystyrene. ChemBioChem 8(9):989–993PubMedCrossRefGoogle Scholar
  153. Sharma A, Bhattacharya A, Shrivastava A (2011) Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb Technol 48(4–5):416–426PubMedCrossRefGoogle Scholar
  154. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235PubMedCrossRefGoogle Scholar
  156. Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277(Pt 2):413–417PubMedPubMedCentralCrossRefGoogle Scholar
  157. Slocik JM, Naik RR (2014) Peptide-nanoparticle strategies, interactions and challenges. In: Walsh TR, Knecht MR (eds) Bio-inspired nanotechnology. Springer, New York, pp 1–16CrossRefGoogle Scholar
  158. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317PubMedCrossRefGoogle Scholar
  159. So CR, Kulp JL, Oren EE et al (2009) Molecular recognition and supramolecular self-assembly of a genetically engineered gold binding peptide on Au{111}. ACS Nano 3(6):1525–1531PubMedCrossRefGoogle Scholar
  160. Sunna A (2010) Modular organisation and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 86(1):189–200PubMedCrossRefGoogle Scholar
  161. Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 7(1):63–70PubMedGoogle Scholar
  162. Sunna A, Gibbs MD, Bergquist PL (2000) A novel thermostable multidomain 1,4-β-xylanase from ‘Caldibacillus cellulovorans’ and effect of its xylan-binding domain on enzyme activity. Microbiology 146(11):2947–2955PubMedCrossRefGoogle Scholar
  163. Sunna A, Chi F, Bergquist PL (2013a) A linker peptide with high affinity towards silica-containing materials. N Biotechnol 30(5):485–492PubMedCrossRefGoogle Scholar
  164. Sunna A, Chi F, Bergquist PL (2013b) Efficient capture of pathogens with a zeolite matrix. Parasitol Res 112(7):2441–2452PubMedCrossRefGoogle Scholar
  165. Taguchi H, Matsuzawa H, Ohta T (1984) l-Lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Eur J Biochem 145(2):283–290PubMedCrossRefGoogle Scholar
  166. Tamerler C, Oren EE, Duman M et al (2006) Adsorption kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir 22(18):7712–7718PubMedCrossRefGoogle Scholar
  167. Tamerler C, Khatayevich D, Gungormus M et al (2010) Molecular biomimetics: GEPI-based biological routes to technology. Biopolymers 94(1):78–94PubMedCrossRefGoogle Scholar
  168. Tang Z, Palafox-Hernandez JP, Law WC et al (2013) Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. ACS Nano 7(11):9632–9646PubMedCrossRefGoogle Scholar
  169. Taniguchi K, Nomura K, Hata Y et al (2007) The Si-tag for immobilizing proteins on a silica surface. Biotechnol Bioeng 96(6):1023–1029PubMedCrossRefGoogle Scholar
  170. Tavolaro A, Tavolaro P, Drioli E (2006) Influence of synthesis parameters on vanadium-silicalite-1 crystal growth prepared with fluoride-containing media. J Cryst Growth 289(2):609–616CrossRefGoogle Scholar
  171. Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15(5):160–167CrossRefGoogle Scholar
  172. Thai CK, Dai H, Sastry MSR et al (2004) Identification and characterization of Cu2O- and ZnO-binding polypeptides by Escherichia coli cell surface display. J Biotech Bioeng 87(2):129–137CrossRefGoogle Scholar
  173. Tran CTH, Nosworthy NJ, Kondyurin A et al (2013) CelB and β-glucosidase immobilization for carboxymethyl cellulose hydrolysis. RSC Adv 3(45):23604–23611CrossRefGoogle Scholar
  174. Trivedi AH, Spiess AC, Daussmann T et al (2006) Study on mesophilic and thermophilic alcohol dehydrogenases in gas-phase reaction. Biotechnol Prog 22(2):454–458PubMedCrossRefGoogle Scholar
  175. Turner P, Mamo G, Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  176. Umlauf BJ, McGuire MJ, Brown KC (2014) Introduction of plasmid encoding for rare tRNAs reduces amplification bias in phage display biopanning. Biotechniques 58(2):81–84Google Scholar
  177. Walsh TR (2014) Fundamentals of peptide-materials interfaces. In: Walsh TR, Knecht MR (eds) Bio-inspired nanotechnology. Springer, New York, pp 17–36CrossRefGoogle Scholar
  178. Wang SQ, Humphreys ES, Chung SY et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2(3):196–200PubMedCrossRefGoogle Scholar
  179. Whaley SR, English DS, Hu EL et al (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405(6787):665–668PubMedCrossRefGoogle Scholar
  180. Wilson SA, Peek K, Daniel RM (1994) Immobilization of a proteinase from the extremely thermophilic organism Thermus Rt41A. Biotechnol Bioeng 43(3):225–231PubMedCrossRefGoogle Scholar
  181. Wilson L, Palomo JM, Fernández-Lorente G et al (2006) Improvement of the functional properties of a thermostable lipase from Alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme Microb Technol 38(7):975–980Google Scholar
  182. Wittrup KD (2001) Protein engineering by cell-surface display. Curr Opin Biotechnol 12(4):395–399PubMedCrossRefGoogle Scholar
  183. Wood T, Garcia-Campayo V (1990) Enzymology of cellulose degradation. Biodegradation 1(2–3):147–161CrossRefGoogle Scholar
  184. Yadav R, Satyanarayanan T, Kotwal S et al (2011) Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles. Curr Sci 100(4):520–524Google Scholar
  185. Yang M, Choi BG, Park TJ et al (2011) Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application. Nanoscale 3(7):2950–2956PubMedCrossRefGoogle Scholar
  186. Ye X, Honda K, Sakai T et al (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11(1):120PubMedPubMedCentralCrossRefGoogle Scholar
  187. You C, Zhang YHP (2013) Cell-free biosystems for biomanufacturing. In: Zhong J-J (ed) Future trends in biotechnology, vol 131. Springer, Berlin, pp 89–119CrossRefGoogle Scholar
  188. Zhang YHP, Myung S, You C et al (2011) Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. J Mater Chem 21(47):18877–18886CrossRefGoogle Scholar
  189. Zhou Z, Hartmann M (2012) Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts. Top Catal 55(16–18):1081–1100CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrew Care
    • 1
  • Peter L. Bergquist
    • 3
    • 2
    • 4
  • Anwar Sunna
    • 3
    • 4
  1. 1.ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)Macquarie UniversitySydneyAustralia
  2. 2.Department of Molecular Medicine and Pathology, Medical SchoolUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Chemistry and Biomolecular SciencesMacquarie UniversitySydneyAustralia
  4. 4.Biomolecular Frontiers Research CentreMacquarie UniversitySydneyAustralia

Personalised recommendations