Skip to main content
Book cover

Evaporites pp 381–490Cite as

Ancient Basins and Stratigraphic Evolution

  • Chapter

Abstract

Is the present the key to the past in evaporite studies? It’s part of a broader question that has plagued geologists working with salts since the seventeenth century, when Werner’s Neptunist postulates explained world geology (including igneous strata) as layered precipitates from cooling oceanic waters. And, like Werner’s Scottish antagonists, we are still discussing the merits of strict uniformitarianism. In this chapter I am not questioning the fundamental principle of using present-day process studies to interpret the past. Nor am I questioning the utility of detailed studies of process analogs and the use of physical constants to reliably interpret the past. Let me put it plainly for the creationist community and proponents of “intelligent design,” all the geological evidence clearly shows the earth is not 8,000, but more than 4 billion years old. Biological evolution is fact, it interacts with and responds to the physical environment and has been in operation on the earth’s surface for at least the past 3.45 billion years. There is no need to invoke the supernatural and sky faeries to explain biological evolution and other earth processes, and there is no geological evidence for a worldwide biblical flood of epic proportions drowning mankind and covering all the land.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Prior to 2009 the proposed base of the Pleistocene (Quaternary was at 1.805 Mya, long after the start of the major glaciations of the northern hemisphere. The ICS (International Commission on Stratigraphy) then proposed to abolish use of the name Quaternary altogether, which appeared unacceptable to the International Union for Quaternary Research (INQUA). In 2009, it was decided to make the Quaternary the youngest period of the Cenozoic Era with its base at 2.588 Mya and including the Gelasian stage, which was formerly considered part of the Neogene Period and Pliocene Epoch.

  2. 2.

    Major climatic cycles are possibly related to plate tectonics; every time the continents are pulled apart huge quantities of volcanic water, carbon dioxide and methane are released into the atmosphere and greenhouse climates prevail on Earth. On the other hand, when continents come together and mountain ranges are created, the mountains are eroded, new soils form and remove CO2 from the atmosphere, these soils are also eroded and the CO2 becomes locked in ocean floor sediments. So when atmospheric CO2 is low, glaciation occurs (as in the Late Ordovician about 440 mya and in the Permo-Carboniferous at about 310–270 mya.)

  3. 3.

    The term “marine-fed” refers to the dominant source of the inflowing groundwaters at the time the evaporites are deposited, not to the presence of a hydrographic connection to the ocean, which these deposits typically lack.

  4. 4.

    A widely accepted definition of the term “supercontinent” is that it describes an assembly into a single landmass of all, or nearly all, the Earth’s continental blocks (Bradley 2011).

  5. 5.

    Rodinia, is generally regarded as having been assembled near the end of the Mesoproterozoic and disassembled in stages during the Neoproterozoic. Reconstructions of Rodinia are notable for their lack of agreement (Bradley 2011), but published assessments of Rodinia’s dates are in general agreement. It was assembled between 1,300 and 950 Ma, lasted from 950 to 850 Ma, and was disassembled from 850 to 600 Ma.

    Whether or not the next youngest continental assemblage in deep time–Gondwana– qualifies as a supercontinent depends on the definition of a supercontinent (what does “nearly all” mean as used in the definition of a supercontinent – see footnote 5.4). Gondwana consisted of all the cratons now in South America, Antarctica, Africa, Arabia, India, and Australia, as well as microcontinents in the Appalachian and Paleotethyan realms. Its fit is well constrained because the now-dispersed pieces can be brought together by closing the modern South Atlantic, Indian, and Southern Oceans; this is essentially the southern half of the Pangaea fit. The collisional assembly of Gondwana spans the interval 690 to 530 Ma, and it remained intact as the southern portion of Pangaea until it began to break up around 300 Ma when it was re-established as Gondwana, a separate large landmass south of Laurasia (Table 5.7).

  6. 6.

    Eustatic change (as opposed to local change) results in a worldwide alteration to the global sea levels due to changes in either the volume of water in the world oceans or net changes in the volume of the ocean basins.

References

  • Achauer, C. W., 1982, Sabkha anhydrite; the supratidal facies of cyclic deposition in the Upper Minnelusa Formation (Permian), Rozet Fields area, Powder River basin, Wyoming, in C. R. Handford, Loucks, R. G., Davies, G. R., ed., Depositional and diagenetic spectra of evaporites; a core workshop., v. 3: Tulsa, OK, SEPM Core Workshop, p. 193–209.

    Google Scholar 

  • Ahr, W. M., 1973, The carbonate ramp: an alternative to the shelf model: Transactions of Gulf Coast Association of Geological Societies, v. 23, p. 221–225.

    Google Scholar 

  • Ainsworth, R. B., S. T. Hasiotis, K. J. Amos, C. B. E. Krapf, T. H. D. Payenberg, M. L. Sandstrom, B. K. Vakarelov, and S. C. Lang, 2012, Tidal signatures in an intracratonic playa lake: Geology, v. 40, p. 607–610.

    Google Scholar 

  • Aktas, G., and J. D. Cocker, 1995, Diagenetic and depositional controls on reservoir quality in Khuff and Unayzah sandstones, Hawtah trend, central Saudi Arabia: Middle East Petroleum Geosciences Conference: Geo-94, v. 1: Manama, Bahrain, Gulf Petrolink, 44–52 p.

    Google Scholar 

  • Al-Jallal, I. A., 1991, Depositional Environments, Lithofacies Types, and Reservoir Development of the Permian Khuff Formation in Eastern Saudi Arabia: American Association Petroleum Geologists – Bulletin, v. 75, p. 1401.

    Google Scholar 

  • Al-Jallal, I. A., 1995, The Khuff Formation: its regional reservoir potential in Saudi Arabia and other Gulf countries: depositional and stratigraphic approach, in M. I. Al-Husseini, ed., Middle East Petroleum Geosciences Conference, GEO’94: , v. 1: Manama, Bahrain, Gulf PetroLink, Bahrain, p. 103–119.

    Google Scholar 

  • Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American Journal of Science, v. 304, p. 1–20.

    Google Scholar 

  • Allen, P. A., and P. F. Hoffman, 2005, Extreme winds and waves in the aftermath of a Neoproterozoic glaciation: Nature, v. 433, p. 123–127.

    Google Scholar 

  • Alley, N. F., 1998, Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin: Palaeogeography Palaeoclimatology Palaeoecology, v. 144, p. 239–263.

    Google Scholar 

  • Alonso, H., and F. Risacher, 1996, Geochemistry of the Salar de Atacama. 1. Origin of components and salt balance [Spanish]: Revista Geologica de Chile, v. 23, p. 113–122.

    Google Scholar 

  • Alsharhan, A. S., 2006, Sedimentological character and hydrocarbon parameters of the Middle Permian to Early Triassic Khuff Formation, United Arab Emirates: Geoarabia, v. 11, p. 121–158.

    Google Scholar 

  • Alsharhan, A. S., 1993, Facies and sedimentary environment of the Permian carbonate (Khuff Formation) in the United Arab Emirates: Sedimentary Geology, v. 84, p. 89–99.

    Google Scholar 

  • Alsharhan, A. S., and C. G. S. C. Kendall, 1994, Depositional setting of the Upper Jurassic Hith Anhydrite of the Arabian Gulf; an analog to Holocene evaporites of the United Arab Emirates and Lake MacLeod of Western Australia: Bulletin American Association of Petroleum Geologists, v. 78, p. 1075–1096.

    Google Scholar 

  • Amadi, F. O., R. P. Major, and L. R. Baria, 2012, Origins of gypsum in deep carbonate reservoirs: Implications for hydrocarbon exploration and production: American Association Petroleum Geologists – Bulletin, v. 96, p. 375–390.

    Google Scholar 

  • Anderson, R. Y., W. E. J. Dean, D. W. Kirkland, and H. I. Snider, 1972, Permian Castile Varved Evaporite Sequence, West Texas and New Mexico: Geological Society of America Bulletin, v. 83, p. 59–85.

    Google Scholar 

  • Apak, S. N., K. A. R. Ghori, G. M. Carlsen, and M. K. Stevens, 2002, Basin Development with implications for Petroleum Trap Styles of the Neoproterozoic Officer Basin, Western Australia: The sedimentary basins of Western Australia 3. Proceedings of the West Australian basins Symposium: Perth, Petroleum Exploration Society of Australia, p. 913–927.

    Google Scholar 

  • Arenas, C., and G. Pardo, 1999, Latest Oligocene-Late Miocene lacustrine systems of the north-central part of the Ebro Basin (Spain): sedimentary facies model and palaeogeographic synthesis: Palaeogeography Palaeoclimatology Palaeoecology, v. 151, p. 127–148.

    Google Scholar 

  • Arenas, C., A. M. A. Zarza, and G. Pardo, 1999, Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain): Sedimentary Geology, v. 125, p. 23–45.

    Google Scholar 

  • Armenteros, I., B. Daley, and E. Garcia, 1997, Lacustrine and palustrine facies in the Bembridge Limestone (Late Eocene, Hampshire Basin) of the Isle of Wight, Southern England: Palaeogeography Palaeoclimatology Palaeoecology, v. 128, p. 111–132.

    Google Scholar 

  • Arp, G., 1995, Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, southern Germany): Facies, v. 33, p. 35–89.

    Google Scholar 

  • Aswasereelert, W., S. R. Meyers, A. R. Carroll, S. E. Peters, M. E. Smith, and K. L. Feigl, 2013, Basin-scale cyclostratigraphy of the Green River Formation, Wyoming: Geological Society of America Bulletin, v. 125, p. 216–228.

    Google Scholar 

  • Awramik, S. M., and H. P. Buchheim, 2009, A giant, Late Archean lake system: The Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia: Precambrian Research, v. 174, p. 215–240.

    Google Scholar 

  • Azer, S. R., and R. G. Peebles, 1998, Sequence stratigraphy of the Arab A to C members and Hith Formation, offshore Abu Dhabi: GeoArabia, v. 3, p. 251–268.

    Google Scholar 

  • Aziz, H. A., E. Sanz-Rubio, J. P. Jose P. Calvo, F. J. Hilgen, and W. Krijgsman, 2003, Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Calatayud Basin (NE Spain): Sedimentology, v. 50, p. 211–236.

    Google Scholar 

  • Balkwill, H. R., 1978, Evolution of Sverdrup Basin, Arctic Canada: Bulletin American Association Petroleum Geologists, v. 62, p. 1004–1028.

    Google Scholar 

  • Barbeau, D. L., 1999, A Flexural Model for the Paradox Basin: Bulletin American Association Petroleum Geologists, v. 83, p. 1881–1882.

    Google Scholar 

  • Becker, F., and T. Bechstadt, 2006, Sequence stratigraphy of a carbonate-evaporite succession (Zechstein 1, Hessian Basin, Germany): Sedimentology, v. 53, p. 1083–1120.

    Google Scholar 

  • Baker, P. A., C. A. Rigsby, G. O. Seltzer, S. C. Fritz, T. K. Lowenstein, N. P. Bacher, and C. Veliz, 2001, Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano: Nature, v. 409, p. 698–701.

    Google Scholar 

  • Bell, C. M., 1989, Saline lake carbonates within an Upper Jurassic-Lower Cretaceous continental red bed sequence in the Atacama region of northern Chile: Sedimentology, p. 4.

    Google Scholar 

  • Bell, C. M., and M. Suarez, 1993, The depositional environments and tectonic development of a Mesozoic intra-arc basin, Atacama region, Chile: Geological Magazine, p. 417–430.

    Google Scholar 

  • Ben-Avraham, Z., T. Niemi, C. Heim, J. Negendank, and A. Nur, 1999, Holocene stratigraphy of the Dead Sea: Correlation of high-resolution seismic reflection profiles to sediment cores: Journal of Geophysical Research-Solid Earth, v. 104, p. 17617–17625.

    Google Scholar 

  • Benan, C. A. A., and G. Kocurek, 2000, Catastrophic flooding of an aeolian dune field: Jurassic Entrada and Todilto Formations, Ghost Ranch, New Mexico, USA: Sedimentology, v. 47, p. 1069–1080.

    Google Scholar 

  • Benison, K. C., and R. H. Goldstein, 2000, Sedimentology of ancient saline pans: An example from the Permian Opeche Shale, Williston Basin, North Dakota, USA: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 159–169.

    Google Scholar 

  • Benison, K. C., and R. H. Goldstein, 2001, Evaporites and siliciclastics of the Permian Nippewalla Group of Kansas, USA: a case for non-marine deposition in saline lakes and saline pans: Sedimentology, v. 48, p. 165–188.

    Google Scholar 

  • Benison, K. C., and R. H. Goldstein, 2002, Recognizing acid lakes and groundwaters in the rock record: Sedimentary Geology, v. 151, p. 177–185.

    Google Scholar 

  • Benson, R. H., K. Rakic-El Bied, and L. W. McKenna, 1997, Eustatic implications of late Miocene depositional sequences in the Melilla Basin, northeastern Morocco: Sedimentary Geology, v. 107, p. 147–165.

    Google Scholar 

  • Berner, R. A., 1999, A new look at the longterm carbon cycle: GSA Today, v. 9, p. 1–6.

    Google Scholar 

  • Bertoni, C., J. Cartwright, and C. Hermanrud, 2013, Evidence for large-scale methane venting due to rapid drawdown of sea level during the Messinian Salinity Crisis: Geology, v. 41, p. 371–374.

    Google Scholar 

  • Bobst, A. L., T. K. Lowenstein, T. E. Jordan, L. V. Godfrey, T. L. Ku, and S. D. Luo, 2001, A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile: Palaeogeography Palaeoclimatology Palaeoecology, v. 173, p. 21–42.

    Google Scholar 

  • Bohacs, K. M., A. R. Carroll, and J. E. Neal, 2003, Lessons from large lake systems 2; Thresholds, nonlinearity, and strange attractors, in M. A. Chan, and A. W. Archer, eds., Extreme Depositional Environments: Mega End Members in GeologicTime: Geological Society of America, Special Paper 370, p. 75–90.

    Google Scholar 

  • Bohacs, K. M., A. R. Carroll, J. E. Neal, and P. J. Mankiewicz, 2000, Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic – geochemical framework, in E. H. Gierlowski-Kodesch, and K. Kelts, eds., Lake basins through space and time, v. 46: Tulsa, American Association Petroleum Geologists Studies in Geology, p. 3–34.

    Google Scholar 

  • Booth, J., and N. Sattayarak, 2000, Multiple inversion of the Khorat Plateau Basin, NE Thailand, with the formation and preservation of a productive gas play (abs): 2000 American Association of Petroleum Geologists International Conference and Exhibition, October 15–18, Bali, Indonesia.

    Google Scholar 

  • Borer, J. M., and P. M. Harris, 1991, Lithofacies and cyclicity of the Yates Formation, Permina Basin: Implications for reservoir heterogeneity: American Association of Petroleum Geologists Bulletin, v. 75, p. 726–779.

    Google Scholar 

  • Bosence, D., 2012, Carbonate-dominated marine rifts, in D. G. Roberts, and A. W. Bally, eds., Phanerozoic Rift systems and Sedimentary Basins, Elsevier, p. 105–130.

    Google Scholar 

  • Boucot, A. J., and J. Gray, 2001, A critique of Phanerozoic climatic models involving changes in the content of the atmosphere: Earth-Science Reviews, v. 56, p. 1–159.

    Google Scholar 

  • Bowen, B. B., and K. C. Benison, 2009, Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia: Applied Geochemistry, v. 24, p. 268–284.

    Google Scholar 

  • Boyer, B. W., 1982, Green River laminites: Does the playa-lake model really invalidate the stratified lake model?: Geology, v. 10, p. 321–324.

    Google Scholar 

  • Bradley, D. C., 2011, Secular trends in the geologic record and the supercontinent cycle: Earth-Science Reviews, v. 108, p. 16–33.

    Google Scholar 

  • Bradley, W. H., and H. P. Eugster, 1969, Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming: U. S. Geological Survey Professional Paper, v. 469B, p. 71p.

    Google Scholar 

  • Bradshaw, J., 1991, Description and depositional model of the Chandler Formation; a Lower Cambrian evaporite and carbonate sequence, Amadeus Basin, central Australia: Bulletin – Australia, Bureau of Mineral Resources, Geology and Geophysics, v. 236, p. 227–244.

    Google Scholar 

  • Braithwaite, C. J. R., and V. Zedef, 1994, Living hydromagnesite stromatolites from Turkey: Sedimentary Geology, v. 92, p. 1–5.

    Google Scholar 

  • Braithwaite, C. J. R., and V. Zedef, 1996, Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Golu, Turkey: Journal of Sedimentary Research A: Sedimentary Petrology and Processes, v. 66, p. 991–1002.

    Google Scholar 

  • Brenchley, P. J., J. D. Marshall, G. A. F. Carden, D. B. R. Robertson, D. G. F. Long, T. Meidla, L. Hints, and T. F. Anderson, 1994, Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period: Geology, v. 22, p. 295–298.

    Google Scholar 

  • Brennan, S. T., and T. K. Lowenstein, 2002, The major-ion composition of Silurian seawater: Geochimica et Cosmochimica Acta, v. 66, p. 2683–2700.

    Google Scholar 

  • Briand, F. e., 2008, The Messinian Salinity Crisis from mega-deposits to microbiology – A Consensus report: CIESM Workshop Monographs v. 33, 168 p.

    Google Scholar 

  • Briggs, L. I., D. Gill, D. Z. Briggs, and R. D. Elmore, 1980, Transition from open marine to evaporite deposition in the Silurian Michigan Basin, in A. Nissenbaum, ed., Hypersaline brines and evaporitic environments: Developments in Sedimentology, v. 28: Amsterdam, Elsevier, p. 253–270.

    Google Scholar 

  • Brongersma-Sanders, M., 1972, Hydrological conditions leading to the development of bituminous sediments in the pre-evaporite phase [with discussion]: in Geology of saline deposits; Geologie des depots salins. Unesco Earth Sci. Ser. No.

    Google Scholar 

  • Brookfield, M. E., 2003, The enigma of fine-grained alluvial basin fills: the Permo-Triassic (Cumbrian Coastal and Sherwood Sandstone Groups) of the Solway Basin, NW England and SW Scotland: Int J Earth Sci (Geol Rundsch), v. 93, p. 282–296.

    Google Scholar 

  • Brookfield, M. E., 2008, Palaeoenvironments and palaeotectonics of the arid to hyperarid intracontinental latest Permian- late Triassic Solway basin (U.K.): Sedimentary Geology, v. 210, p. 27–47.

    Google Scholar 

  • Bryant, R. G., N. A. Drake, A. C. Millington, and B. W. Sellwood, 1994a, The chemical evolution of the brines on Chott el Djerid, southern Tunisia after an exceptional rainfall event in January 1990, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, v. 50: Tulsa, Okl, SEPM/Society for Sedimentary Geology; Special Publication, p. 3–12.

    Google Scholar 

  • Bryant, R. G., B. W. Sellwood, A. C. Millington, and N. A. Drake, 1994b, Marine-like potash evaporite formation on a continental playa; case study from Chott el Djerid, southern Tunisia: Sedimentary Geology, v. 90, p. 269–291.

    Google Scholar 

  • Budd, D. A., A. H. Saller, and P. M. Harris, 1995, Unconformities and porosity in carbonate strata, v. American Association of Petroleum Geologists Memoir 63: Tulsa, Okla, American Association of Petroleum Geologists.

    Google Scholar 

  • Burchette, T. P., and V. P. Wright, 1992, Carbonate ramp depositional systems: Sedimentary Geology, v. 79, p. 3–57.

    Google Scholar 

  • Busson, G., 1980, Evaporite deposits; illustration and interpretation of some environmental sequences: Paris, France, Ed. Technip, 266 p.

    Google Scholar 

  • Butler, R. W. H., W. H. Lickorish, M. Grasso, H. M. Pedley, and L. Ramberti, 1995, Tectonics and sequence stratigraphy in Messinian basins, Sicily; constraints on the initiation and termination of the Mediterranean salinity crisis: Geological Society of America Bulletin, v. 107, p. 425–439.

    Google Scholar 

  • Calon, T. J., A. E. Aksu, and J. Hall, 2005, The Oligocene-Recent evolution of the Mesaoria Basin (Cyprus) and its western marine extension, Eastern Mediterranean: Marine Geology, v. 221, p. 95–120.

    Google Scholar 

  • Camoin, G., J. Casanova, J. M. Rouchy, M. M. Blancvalleron, and J. F. Deconinck, 1997, Environmental controls on perennial and ephemeral carbonate lakes – the central Paleo-Andean basin of Bolivia during Late Cretaceous to Early Tertiary times: Sedimentary Geology, v. 113, p. 1–26.

    Google Scholar 

  • Carroll, A. R., and K. M. Bohacs, 1999, Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls: Geology, v. 27, p. 99–102.

    Google Scholar 

  • Carroll, A. R., S. C. Brasell, and S. A. Graham, 1992, Upper Permian lacustrine oil shales, southern Junggar Basin, Northwest China: American Association Petroleum Geologists – Bulletin, v. 76, p. 1874–1902.

    Google Scholar 

  • Cartwright, J. A., and M. P. A. Jackson, 2008, Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean: Geological Society of America Bulletin, v. 120, p. 399–413.

    Google Scholar 

  • Cathro, D. L., J. K. Warren, and G. E. Williams, 1992, Halite saltern in the Canning Basin, Western Australia; a sedimentological analysis of drill core from the Ordovician-Silurian Mallowa Salt: Sedimentology, v. 39, p. 983–1002.

    Google Scholar 

  • Cercone, K. R., 1988, Evaporative sea level drawdown in the Michigan Basin: Geology, v. 16, p. 387–390.

    Google Scholar 

  • Chekunov, A. V., V. K. Garvish, R. I. Kutas, and L. I. Ryabchun, 1992, Dnieper-Donets palaeorift: Tectonophysics, v. 208, p. 257–272.

    Google Scholar 

  • Chen, K., and J. M. Bowler, 1986, Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 87–104.

    Google Scholar 

  • Chough, S. K., S. B. Kim, and S. S. Chun, 1996, Sandstone/chert and laminateed chert/black shale couplets, Creataceous Uhangri Formation (southwest Korea): depositional evenets in alkaline lake environments: Sedimentary Geology, v. 104, p. 227–242.

    Google Scholar 

  • Cita, M. B., 1983, The Messinian salinity crisis in the Mediterranean: A review, in H. Berckhemer, and K. J. Hsu, eds., Alpine Mediterranean Geodynamics Review, v. 8, American Geophysical Union; Geodynamics Series, p. 113–140.

    Google Scholar 

  • Cita, M. B., G. Grecchi, and F. Roegl, 1978, Intragypsifeous marls of the San Miguel de Salinas Basin (Spain); paleogeographic implications of a quantitative study: Cita, M. B. International meeting on geodynamic and biodynamic effects of Messinian salinity crisis in the Mediterranean. Messinian Semin.

    Google Scholar 

  • Clark, D. N., 1980a, The sedimentology of the Zechstein 2 Carbonate Formation of eastern Drenthe, the Netherlands, in H. Fuchtbauer, and T. Peryt, eds., The Zechstein basin with emphasis on carbonate sequences, E. Schweizerbart’sche VbH: Contributions to Sedimentology 9, p. 131–165.

    Google Scholar 

  • Clark, D. N., 1980b, The diagenesis of Zechstein carbonate sediments, in H. Fuchtbauer, and T. Peryt, eds., The Zechstein basin with emphasis on carbonate sequences, E. Schweizerbart’sche VbH: Contributions to Sedimentology 9, p. 167–203.

    Google Scholar 

  • Clarke, P., and J. Parnell, 1999, Facies analysis of a back-tilted lacustrine basin in a strike-slip zone, Lower Devonian, Scotland: Palaeogeography Palaeoclimatology Palaeoecology. 151(1–3):167–190, v. 151, p. 167–190.

    Google Scholar 

  • Clauzon, G., J. P. Suc, F. Gautier, A. Berger, and M. F. Loutre, 1996, Alternate interpretation of the Messinian salinity crisis: controversy resolved?: Geology, v. 24, p. 363–366.

    Google Scholar 

  • Clemmensen, L. B., 1978, Alternating aeolian, sabkha and shallow-lake deposits from the Middle Triassic Gipsdalen Formation, Scoresby Land, East Greenland: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 24, p. 111–135.

    Google Scholar 

  • Clemmensen, L. B., W. T. Holser, and D. Winter, 1984, Stable isotope study through Permain Triassic boundary: Bull. Geol. Soc. Denmark, v. 33, p. 253–260.

    Google Scholar 

  • Cogley, J. G., 1984, Continental margins and the extent and number of the continents (Paper 4R0215): Reviews Geophysics Space Physics, v. 22, p. 101–122.

    Google Scholar 

  • Condie, K. C., 2004, Supercontinents and superplume events: distinguishing signals in the geologic record: Physics of the Earth and Planetary Interiors, v. 146, p. 319–332.

    Google Scholar 

  • Cramer, B. S., J. R. Toggweiler, J. D. Wright, M. E. Katz, and K. G. Miller, 2009, Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation: Paleoceanography, v. 24, p. PA 4216.

    Google Scholar 

  • Cunningham, K. J., R. H. Benson, K. Rakicelbied, and L. W. Mckenna, 1997, Eustatic implications of Late Miocene depositional sequnces in the Melillla Basin, Northeastern Morocco: Sedimentary Geology, v. 107, p. 147–165.

    Google Scholar 

  • Czapowski, G., 1987, Sedimentary facies in the oldest rock salt (Na 1) of the Leba elevation (northern Poland), in T. M. Peryt, ed., The Zechstein Facies in Europe, v. 10: Berlin, Springer-Verlag Lecture Notes in Earth Sciences, p. 207–224.

    Google Scholar 

  • Das, N., J. Horita, and H. D. Holland, 1990, Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin; implications for Late Silurian seawater and the origin of sedimentary brines: Geochimica et Cosmochimica Acta, v. 54, p. 319–327.

    Google Scholar 

  • Dasgupta, S., M. R. Hong, and I. A. Al-Jallal, 2002, Accurate reservoir characterization to reduce drilling risk in Khuff-C carbonate, Ghawar field, Saudi Arabia: GeoArabia, v. 7, p. 81–100.

    Google Scholar 

  • Davison, I., 2007, Geology and tectonics of the South Atlantic Brazilian salt basins: Geological Society, London, Special Publications, v. 272, p. 345–359.

    Google Scholar 

  • De Lange, G. J., and W. Krijgsman, 2010, Messinian salinity crisis: A novel unifying shallow gypsum/deep dolomite formation mechanism: Marine Geology, v. 275, p. 273–277.

    Google Scholar 

  • De Leeuw, A., K. Bukowski, W. Krijgsman, and K. F. Kuiper, 2010, Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region: Geology, v. 38, p. 715–718.

    Google Scholar 

  • De Putter, T., J. M. Rouchy, A. Herbosch, E. Keppens, C. Pierre, and E. Groessens, 1994, Sedimentology and palaeo-environment of the upper Visean anhydrite of the Franco-Belgian Carboniferous basin (Saint-Ghislain borehole, southern Belgium): Sedimentary Geology, v. 90, p. 77–93.

    Google Scholar 

  • Decima, A., J. A. McKenzie, and B. C. Schreiber, 1988, The origin of “evaporative” limestones: An Example from the Messinian of Sicily: Journal of Sedimentary Petrology, v. 58, p. 256–272.

    Google Scholar 

  • Decima, A., and F. C. Wezel, 1971, Osservazioni sulle evaporiti messiniane della Sicilia centromeridionale: Rivista Mineraria Siciliana, v. 130–132, p. 172–187.

    Google Scholar 

  • Dela Pierre, F., E. Bernardi, S. Cavagna, P. Clari, R. Gennari, A. Irace, F. Lozar, S. Lugli, V. Manzi, M. Natalicchio, M. Roveri, and D. Violanti, 2011, The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba section revisited: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 310, p. 238–255.

    Google Scholar 

  • Dela Pierre, F., P. Clari, E. Bernardi, M. Natalicchio, E. Costa, S. Cavagna, F. Lozar, S. Lugli, V. Manzi, M. Roveri, and D. Violanti, 2012, Messinian carbonate-rich beds of the Tertiary Piedmont Basin (NW Italy): Microbially-mediated products straddling the onset of the salinity crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 3443345, p. 78–93.

    Google Scholar 

  • Dela Pierre, F., A. Festa, and A. Irace, 2007, Interaction of tectonic, sedimentary, and diapiric processes in the origin of chaotic sediments: An example from the Messinian of Torino Hill (Tertiary Piedmont Basin, northwestern Italy): Geological Society of America Bulletin, v. 119, p. 1107–1119.

    Google Scholar 

  • Dellwig, L. F., 1955, Origin of the Salina Salt of Michigan: Journal Sedimentary Petrology, v. 25, p. 83–110.

    Google Scholar 

  • Dellwig, L. F., and R. Evans, 1969, Depositional processes in Salina salt of Michigan, Ohio, and New York: Bulletin American Association of Petroleum Geologists, v. 53, p. 949–956.

    Google Scholar 

  • Desborough, G. A., 1978, A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation: an alternative to the playa lake model: Bulletin Geological Society of America, v. 89, p. 961–971.

    Google Scholar 

  • Diaz, G. C., M. Mendoza, J. Garcia-Veigas, J. Pueyo, and P. Turner, 1999, Evolution and geochemical signatures in a Neogene forearc evaporitic basin: the Salar Grande (Central Andes of Chile): Palaeogeography Palaeoclimatology Palaeoecology, v. 151, p. 39–54.

    Google Scholar 

  • Donovan, R. N., 1993, Evaporites in the Middle Devonian of the Orcadian Basin near Berriedale, Caithness: Scottish Journal of Geology, v. 29, p. 45–54.

    Google Scholar 

  • Dronkert, H., 1985, Evaporite models and sedimentology of Messinian and Recent evaporites: GUA Papers of Geology, Series 1, v. 24, p. 283 pp.

    Google Scholar 

  • Droste, J. B., and R. H. Shaver, 1985, Comparative stratigraphic framework for Silurian reefs: Michigan Basin to surrounding platforms, in K. R. Cercone, and J. M. Budai, eds., Ordovician and Silurian Rocks of the Michigan Basin and its Margins, Michigan Basin Geological Society Special Paper No. 4, p. 79–94.

    Google Scholar 

  • Drury, M. R., 1999, Stepping stones; The making of our home world, Oxford University Press, 409 p.

    Google Scholar 

  • Du Plessis, P. I., and J. P. Leroux, 1995, Late Cretaceous alkaline saline lake complexes of the Kalahari Group in northern Botswana: Journal of African Earth Sciences, v. 20, p. 7–15.

    Google Scholar 

  • Dyni, J. R., 1981, Geology of the nahcolite deposits and oil shales of the Green River Formation in the Piceance Creek Basin, Colorado: Doctoral thesis, University of Colorado, Boulder, 182 p.

    Google Scholar 

  • Eardley, A. J., 1938, Sediments of Great Salt Lake, Utah: Bulletin American Association of Petroleum Geologists, v. 22, p. 1305–1411.

    Google Scholar 

  • Edgell, H. S., 1991, Proterozoic salt basins of the Persian Gulf area and their role in hydrocarbon generation: Precambrian Research, v. 54, p. 1–14.

    Google Scholar 

  • Edgell, H. S., 1996, Salt tectonism in the Persian Gulf Basin, in G. I. Alsop, D. J. Blundell, and I. Davison, eds., Salt tectonics, v. 100: London, United Kingdom, Geological Society of London Special Publication, p. London, United Kingdom.

    Google Scholar 

  • Edwards, S., D. McKirdy, Y. Bone, P. Gell, and V. Gostin, 2006, Diatoms and ostracods as mid-Holocene palaeoenvironmental indicators, North Stromatolite Lake, Coorong National Park, South Australia *: Australian Journal of Earth Sciences, v. 53, p. 651–663.

    Google Scholar 

  • Ehrenberg, S. N., P. H. Nadeau, and A. A. M. Aqrawi, 2007, A comparison of Khuff and Arab reservoir potential throughout the Middle East: Bulletin American Association Petroleum Geologists, v. 91, p. 275–286.

    Google Scholar 

  • Einsele, G., 2000, Sedimentary basins: evolution, facies and sediment budget: Berlin, Springer, 792 p.

    Google Scholar 

  • El Anbaawy, M. I. H., M. A. H. Al Aawah, K. A. Al Thour, and M. E. Tucker, 1992, Miocene evaporites of the Red Sea Rift, Yemen Republic; sedimentology of the Salif halite: Sedimentary Geology, v. 81, p. 61–71.

    Google Scholar 

  • El Tabakh, M., R. Riccioni, and B. C. Schreiber, 1997, Evolution of Late Triassic rift basin evaporites (Passaic Formation) – Newark Basin, eastern North America: Sedimentology, v. 44, p. 767–790.

    Google Scholar 

  • El Tabakh, M., B. C. Schreiber, and J. K. Warren, 1998b, Origin of fibrous gypsum in the Newark rift basin, eastern North America: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 88–99.

    Google Scholar 

  • El Taki, H., and B. R. Pratt, 2010, Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites : RedRiver strata (Upper Ordovician) of Southern Saskatchewan, Canada: Bulletin Canadian Petroleum Geology, v. 60, p. 37–58.

    Google Scholar 

  • Elliott, L. A., and J. K. Warren, 1989, Stratigraphy and depositional environment of lower San Andres Formation in subsurface and equivalent outcrops; Chaves, Lincoln, and Roosevelt counties, New Mexico: Bulletin American Association of Petroleum Geologists, v. 73, p. 1307–1325.

    Google Scholar 

  • Eriksson, P. G., S. Banerjee, O. Catuneanu, P. L. Corcoran, K. A. Eriksson, E. E. Hiatt, M. Laflamme, N. Lenhardt, D. G. F. Long, A. D. Miall, M. V. Mints, P. K. Pufahl, S. Sarkar, E. L. Simpson, and G. E. Williams, 2013, Secular changes in sedimentation systems and sequence stratigraphy: Gondwana Research, v. 24, p. 468–489.

    Google Scholar 

  • Esteban, M., 1996, An overview of Miocene reefs from Mediterranean areas: general trends and facies models, in E. K. e. a. Franseen, ed., Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions, v. 5, SEPM/Society for Sedimentary Geology; Concepts in Sedimentology and Paleontology, p. 3–53.

    Google Scholar 

  • Esteban, M., and L. C. Pray, 1983, Pisoids and pisolite facies (Permian), Guadalupe Mountains, New Mexico and West Texas, in T. M. Peryt, ed., Coated Grains: Berlin, Springer-Verlag, p. 503–537.

    Google Scholar 

  • Eugster, H. P., 1986, Lake Magadi, Kenya; a model for rift valley hydrochemistry and sedimentation?, in L. E. Frostick, R. W. Renaut, I. Reid, and J. J. Tiercelin, eds., Sedimentation in the African rifts, Geological Society Special Publication 25, p. 177–189.

    Google Scholar 

  • Eugster, H. P., and G. Maglione, 1979, Brines and evaporites of the Lake Chad basin, Africa: Geochim. Cosmochim. Acta., v. 43, p. 973–982.

    Google Scholar 

  • Eugster, H. P., and R. Surdam, 1973, Depositional environment of the Green River Formation of Wyoming: A preliminary report: Bulletin Geological Society of America, v. 84, p. 1115–1120.

    Google Scholar 

  • Evans, D. A. D., 2006, Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes: Nature, v. 444, p. 51–55.

    Google Scholar 

  • Evans, G., V. Schmidt, P. Bush, and H. Nelson, 1969, Stratigraphy and geologic history of the sabkha, Abu Dhabi, Persian Gulf: Sedimentology, v. 12, p. 145–159.

    Google Scholar 

  • Evans, R., 1978, Origin and significance of evaporites in basins around Atlantic margin: Bulletin American Association Petroleum Geologists, v. 62, p. 223–234.

    Google Scholar 

  • Faulds, J. E., B. C. Schreiber, S. J. Reynolds, L. A. Gonzalez, and D. Okaya, 1997, Origin and paleogeography of an immense, nonmarine Miocene salt deposit in the basin and range (Western USA): Journal of Geology, v. 105, p. 19–36.

    Google Scholar 

  • Feng, Z., Y. S. Zhang, and Z. K. Jin, 1998, Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China platform: Sedimentary Geology, v. 118, p. 127–140.

    Google Scholar 

  • Frakes, L. A., J. E. Francis, and J. I. Syktus, 1992, Climate modes of the Phanerozoic: the history of the earth’s climate over the past 600 million years: New York, Cambridge University Press, 274 p.

    Google Scholar 

  • Finkelstein, D. B., R. L. Hay, and S. P. Altaner, 1999, Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado: Geological Society of America Bulletin, v. 111, p. 1175–1191.

    Google Scholar 

  • Fischer, A. G., 1981, Climatic oscillations in the biosphere, in M. Nitecki, ed., Biotic crises in ecological and evolutionary time: New York, Academic Press, p. 103–131.

    Google Scholar 

  • Fischer, A. G., and M. Sarnthein, 1988, Airborne silts and dune-derived sands in the Permian of the Delaware Basin: Journal of Sedimentary Petrology, v. 58, p. 637–643.

    Google Scholar 

  • Fontes, J. C., P. Pouchan, J. F. Saliege, and G. M. Zuppi, 1980, Environmental isotope study of groundwater system in Republic of Djibouti: Arid Zone Hydrology – Proceedings of Advisory Group Meeting, p. 237–267.

    Google Scholar 

  • Fuersich, F. T., S. Freytag, J. Roehl, and A. Schmid, 1995, Palaeoecology of benthic associations in salinity-controlled marginal marine environments; examples from the lower Bathonian (Jurassic) of the Causses (southern France): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 113, p. 135–172.

    Google Scholar 

  • GarcÌa-Veigas, J., L. Rosell, F. OrtÌ, I. Gundogan, and C. HelvacI, 2011b, Mineralogy, diagenesis and hydrochemical evolution in a probertite-glauberite-halite saline lake (Miocene, Emet Basin, Turkey): Chemical Geology, v. 280, p. 352–364.

    Google Scholar 

  • Gautier, F., G. Clauzon, J. P. Suc, J. Cravette, and D. Violant, 1994, Age et durée de la crise de salinité messinienne: C. R. Acad. Sci. Paris Ser. 2, v. 318, p. 1103–1109.

    Google Scholar 

  • Geluk, M. C., 2000, Late Permian (Zechstein) carbonate-facies maps, the Netherlands: Geologie en Mijnbouw, v. 79, p. 17–27.

    Google Scholar 

  • Gely, J. P., V. M. M. Blanc, D. F. Fache, M. Schuler, and M. Ansart, 1993, Characterization of organic-rich material in an evaporitic environment; the lower Oligocene of the Mulhouse Basin (Alsace, France): Geologische Rundschau, v. 82, p. 718–725.

    Google Scholar 

  • Gill, D., 1977, Salina A-1 sabkha cycles and the Late Silurian paleogeography of the Michigan Basin: Journal of Sedimentary Petrology, v. 47, p. 979–1017.

    Google Scholar 

  • Gill, D., 1985, Depositional facies of Middle Silurian (Niagaran) pinnacle reefs, Belle River Mills gas field, Michigan Basin, SE Michigan, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: a case book: New York, Springer Verlag, p. 123–139.

    Google Scholar 

  • Goodall, I. G., G. M. Harwood, A. C. Kendall, T. McKie, and M. E. Tucker, 1992, Discussion on sequence stratigraphy of carbonate-evaporite basins; models and application to the Upper Permian (Zechstein) of Northeast England and adjoining North Sea: Journal of the Geological Society of London, v. 149, p. 1050–1054.

    Google Scholar 

  • Gundogan, I., and C. Helvaci, 2001, Sedimentological and petrographical aspects of Upper Miocene evaporites in the Beypazari and Cankiri-Corum basins, central Anatolia, Turkey: International Geology Review, v. 43, p. 818–829.

    Google Scholar 

  • Grande, L., 1980, Paleontology of the Green River Formation, with a review of the fish fauna: Bull. Univ. Geol. Surv. Wyoming, v. 63, p. 333p.

    Google Scholar 

  • Griffin, D. L., 1999, The late Miocene climate of northeastern Africa: Unravelling the signals in the sedimentary succession: Journal of the Geological Society, v. 156, p. 817–826.

    Google Scholar 

  • Griffin, D. L., 2002, Aridity and humidity: two aspects of the late Miocene climate of North Africa and the Mediterranean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 182, p. 65–91.

    Google Scholar 

  • Gueddari, M., 1984, Geochimie et thermodynamique des evaporites continentales: etude de lac Natron en Tanzanie et du Chott el Jerid en Tunisie. (Geochemistry and thermodynamics of continental evaporites: a study of Lake Natron in Tanzania and the Chott el Djerid in Tunisia). Sciences Geologiques Memoire, v. 76, p. 143 pp.

    Google Scholar 

  • Guiraud, R., 1965, Geologie et hydrogeologie du bassin versant du Chott el Hodna; resume des connaissances actuelles: Algeria, Serv. Geol., Bull. No., v. 33, p. 51–66.

    Google Scholar 

  • Gurer, O. F., and A. Gurer, 1999, Development of evaporites and the counterclockwise rotation of Anatolia, Turkey: International Geology Review, v. 41, p. 607–622.

    Google Scholar 

  • Hafid, M., 2000, Triassic-early Liassic extensional systems and their Tertiary inversion, Essaouira Basin (Morocco): Marine & Petroleum Geology, v. 17, p. 409–429.

    Google Scholar 

  • Hallam, A., 1981, Facies interpretation and the stratigraphic record: San Francisco, W. H. Freeman and Co., 291 p.

    Google Scholar 

  • Handford, C. R., 1991, Marginal marine halite; sabkhas and salinas, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50, Elsevier Developments in Sedimentology, p. 1–66.

    Google Scholar 

  • Handford, H. R., 1981, Coastal sabkha and salt pan deposition of the lower Clear Fork Formation (Permian), Texas: Journal of Sedimentary Petrology, v. 51, p. 761–778.

    Google Scholar 

  • Haq, B. U., and A. M. Al-Qahtani, 2005, Phanerozoic cycles of sea-level change on the Arabian Platform: GeoArabia, v. 10, p. 127–160.

    Google Scholar 

  • Haq, B. U., J. Hardenbol, and P. R. Vail, 1987, Chronology of fluctuating sea levels since the Triassic: Science, v. 235, p. 1156–1167.

    Google Scholar 

  • Haq, B. U., and F. W. B. van Eysinga, 1998, A geological time table. Elsevier Science Publishers. Amsterdam, The Netherlands. Wall chart.

    Google Scholar 

  • Hardie, L. A., 1984, Evaporites: Marine or non-marine?: American Journal of Science, v. 284, p. 193–240.

    Google Scholar 

  • Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43–106.

    Google Scholar 

  • Hardie, L. A., and H. P. Eugster, 1971, The depositional environment of marine evaporites: A case for shallow, clastic accumulation: Sedimentology, v. 16, p. 187–220.

    Google Scholar 

  • Hardie, L. A., and T. K. Lowenstein, 2004, Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores: Journal of Sedimentary Research, v. 74, p. 453–461.

    Google Scholar 

  • Hay, R. L., and T. K. Kyser, 2001, Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania: Geological Society of America Bulletin, v. 113, p. 1510–1521.

    Google Scholar 

  • Hay, W. W., R. M. Deconto, and C. N. Wold, 1997, Climate – is the past the key to the future: Geologische Rundschau, v. 86, p. 471–491.

    Google Scholar 

  • Hay, W. W., A. Migdisov, A. N. Balukhovsky, C. N. Wold, S. Flogel, and E. Soding, 2006, Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, p. 3–46.

    Google Scholar 

  • Helvaci, C., F. Orti, J. Garcia-Veigas, L. Rosell, and I. Gungodan, 2012, Neogene Borate deposits: Mineralogy, Petrology and Sedimentology; A workshop with special emphasis on the Anatolian deposits International Earth Science Colloquium on the Aegean Region (IESCA- 2012, Izmir, Turkey) 64 pp.

    Google Scholar 

  • Herdendorf, C. E., 1984, Inventory of the morphometric and limnologic characteristics of the large lakes of the world: Ohio State University Sea grant Program Technical Bulletin, v. OHSU-TB-17, p. 78 p.

    Google Scholar 

  • Hesse, P. P., J. W. Magee, and S. van der Kaars, 2004, Late Quaternary climates of the Australian arid zone: a review: Quaternary International, v. 118–119, p. 87–102.

    Google Scholar 

  • Hite, R. J., and D. E. Anders, 1991, Petroleum and evaporites, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50: Amsterdam, Elsevier Developments in Sedimentology, p. 477–533.

    Google Scholar 

  • Hodell, D. A., J. H. Curtis, F. J. Sierro, and M. E. Raymo, 2001, Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic: Paleoceanography, v. 16, p. 164–178.

    Google Scholar 

  • Hoffman, P. F., 2011, Strange bedfellows: glacial diamictite and cap carbonate from the Marinoan (635 Ma) glaciation in Namibia: Sedimentology, v. 58, p. 57–119.

    Google Scholar 

  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998, A Neoproterozoic Snowball Earth: Science, v. 281, p. 1342–1346.

    Google Scholar 

  • Holser, W. T., G. P. Clement, L. F. Jansa, and J. A. Wade, 1988, Evaporite deposits of the North Atlantic Rift, in W. Manspeizer, ed., Triassic-Jurassic rifting: Continental breakup and the origin of the Atlantic Ocean and Passive margins, v. Developments in Geotectonics 22: Amsterdam, Elsevier, p. 525–556.

    Google Scholar 

  • Holwerda, J. G., and R. W. Hutchinson, 1968, Potash-bearing evaporites in the Danakil area, Ethiopia: Economic Geology, v. 63, p. 124–150.

    Google Scholar 

  • Hover, V. C., and G. M. Ashley, 2003, Geochemical signatures of paleodepositional and diagenetic environments: A STEM/AEM study of authigenic clay minerals from an arid rift basin, Oluvai Gorge, Tanzania: Clays and Clay Minerals, v. 51, p. 231–251.

    Google Scholar 

  • Hovorka, S., 1987, Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas: Sedimentology, v. 34, p. 1029–1054.

    Google Scholar 

  • Howell, P. D., and B. A. van der Pluijm, 1999, Structural sequences and styles of subsidence in the Michigan Basin: Geological Society America Bulletin, v. 111, p. 974–991.

    Google Scholar 

  • Hsu, K. J., W. B. F. Ryan, and M. B. Cita, 1973, Late Miocene Desiccation of the Mediterranean: Nature, v. 242, p. 240–244.

    Google Scholar 

  • Hubert, J. F., and M. G. Hyde, 1982, Sheetflow deposits of graded beds and mudstones on an alluvial sandflat-playa system; the Upper Triassic Blomidon Redbeds, St Marys Bay, Nova Scotia: Sedimentology, v. 29, p. 457–474.

    Google Scholar 

  • Hübscher, C., E. Tahchi, I. Klaucke, A. Maillard, and H. Sahling, 2009, Salt tectonics and mud volcanism in the Latakia and Cyprus Basins, eastern Mediterranean: Tectonophysics, v. 470, p. 173–182.

    Google Scholar 

  • Huddart, D., and T. Stott, 2010, Earth Environments: Past, present and future: Oxford, Wiley and Sons, Inc.

    Google Scholar 

  • Hudec, M. R., and M. P. A. Jackson, 2007, Terra infirma: Understanding salt tectonics: Earth-Science Reviews, v. 82, p. 1–28.

    Google Scholar 

  • Hudec, M. R., M. P. A. Jackson, and F. J. Peel, 2013b, Influence of deep Louann structure on the evolution of the northern Gulf of Mexico: Bulletin American Association Petroleum Geologists, v. 97, p. 1711–1735.

    Google Scholar 

  • Hudec, M. R., I. O. Norton, M. P. A. Jackson, and F. J. Peel, 2013a, Jurassic evolution of the Gulf of Mexico salt basin: Bulletin American Association Petroleum Geologists, v. 97, p. 1683–1710.

    Google Scholar 

  • Huismans, R. S., and C. Beaumont, 2008, Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension: Geology, v. 36, p. 163–166.

    Google Scholar 

  • Hunt, D., and M. E. Tucker, 1992, Stranded parasequences and forced regressive wedge systems tract; deposition during base level fall: Sedimentary Geology, v. 81, p. 1–9.

    Google Scholar 

  • Hunt, D. W., W. M. Fitchen, and E. Kosa, 2002, Syndepositional deformation of the Permian Capitan reef carbonate platform, Guadalupe Mountains, New Mexico, USA: Sedimentary Geology, v. 154, p. 89–126.

    Google Scholar 

  • Hussain, M., and J. K. Warren, 1989, Nodular and enterolithic gypsum; the ‘’sabkha-tization” of Salt Flat Playa, West Texas: Sedimentary Geology, v. 64, p. 13–24.

    Google Scholar 

  • Husseini, M. I., 1989, Tectonic and deposition model of late Precambrian-Cambrian Arabian and adjoining plates: Bulletin American Association Petroleum Geologists, v. 73, p. 1117–1131.

    Google Scholar 

  • Irwin, M. L., 1965, General theory of epeiric clear water sedimentation: American Association of Petroleum Geologists Bulletin, v. 49, p. 445–459.

    Google Scholar 

  • Jackson, M. P. A., C. Cramez, and J. M. Fonck, 2000, Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks: Marine and Petroleum Geology, v. 17, p. 477–498.

    Google Scholar 

  • Jacobson, G., 1988, Hydrology of Lake Amadeus, a groundwater-discharge playa in central Australia: BMR Journal of Australian Geology & Geophysics, v. 10, p. 301–308.

    Google Scholar 

  • James, N. P., and A. C. Kendall, 1992, Introduction to carbonate and evaporite facies models, in R. G. Walker, and N. P. James, eds., Facies Models: Responses to sea level change, Geological Association of Canada, p. 265–275.

    Google Scholar 

  • Johns, R. K., 1968, Investigation of Lake Torrens and Gairdner: Geological Survey of South Australia, Report of Investigation, v. 31.

    Google Scholar 

  • Jordan, T. E., C. Mpodozis, N. Munoz, N. Blanco, P. Pananont, and M. Gardeweg, 2007, Cenozoic subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile: Journal of South American Earth Sciences, v. 23, p. 122–146.

    Google Scholar 

  • Kabyshev, B., B. Krivchenkov, S. Stovba, and P. A. Ziegler, 1998, Hydrocarbon habitat of the Dniepr-Donets depression: Marine & Petroleum Geology, p. 177–190.

    Google Scholar 

  • Kah, L. C., T. W. Lyons, and J. T. Chesley, 2001, Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution: Precambrian Research, v. 111, p. 203–234.

    Google Scholar 

  • Kaldi, J., and J. Gidman, 1982, Early diagenetic dolomite cements; examples from the Permian Lower Magnesian Limestone of England and the Pleistocene carbonates of the Bahamas: Journal of Sedimentary Petrology, v. 52, p. 1073–1085.

    Google Scholar 

  • Kargel, J. S., J. F. Schreiber, and C. P. Sonett, 1996, Mudcracks and dedolomitisation in the Wittenoom Dolomite, Hamersley Group, Western Australia: Global & Planetary Change, v. 14, p. 73–96.

    Google Scholar 

  • Kelts, K., and M. Shahrabi, 1986, Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 105–130.

    Google Scholar 

  • Kendall, A. C., 1988, Aspects of evaporite basin stratigraphy, in B. C. Schreiber, ed., Evaporites and hydrocarbons: New York, Columbia University Press, p. 11–65.

    Google Scholar 

  • Kendall, A. C., 1989, Brine mixing in the Middle Devonian of Western Canada and its possible significance to regional dolomitization: Sedimentary Geology, v. 64, p. 271–285.

    Google Scholar 

  • Kendall, A. C., 1992, Evaporites, in R. G. Walker, and N. P. James, eds., Facies Models: Responses to sea level change, Geological Association of Canada, p. 375–409.

    Google Scholar 

  • Kendall, C. G. S. C., and J. K. Warren, 1987, A review of the origin and setting of tepees and their associated fabrics: Sedimentology, v. 34, p. 1007–1027.

    Google Scholar 

  • Kennet, J. P., 1982, The Terminal Miocene Event, Global Cooling and the Mediterranean Salinity Crisis, in J. P. Kennet, ed., Marine Geology: Englewood Cliffs, New Jersey, Prentice Hall, p. 738–742.

    Google Scholar 

  • Kerans, C., and W. M. Fitchen, 1996, Sequence hierarchy and facies architecture of a carbonate-ramp system: San Andres Formation of Algerita escarpment and western Guadalupe Mountains, west Texas and New Mexico: Report of Investigation – Bureau of Economic Geology, Univ of Texas at Austin, v. 235, p. 86p.

    Google Scholar 

  • Kerans, C., W. M. Fitchen, W. C. Gardner, and B. R. Wardlow, 1993, New Mexico Geological Society Guidebook: 44th Field Conference, Carlsbad Region, New Mexico and West Texas, p. 175–184.

    Google Scholar 

  • Khalili, M., R. Beavers, and H. Torabi, 2007, Depositional environment of the evaporitic unit (D-member) of the Qom Formation (Central Iran): Carbonates and Evaporites, v. 22, p. 101–112.

    Google Scholar 

  • Kiessling, W., E. Flugel, and J. Golonka, 1999, Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs: Bulletin-American Association of Petroleum Geologists, v. 83, p. 1552–1587.

    Google Scholar 

  • Kipfer, R., W. Aeschbachhertig, H. Baur, M. Hofer, D. M. Imboden, and P. Signer, 1994, Injection of mantle type helium in Lake Van (Turkey) – the clue for quantifying deep water renewal: Earth & Planetary Science Letters, v. 125, p. 357–370.

    Google Scholar 

  • Kirkland, D. W., R. E. Denison, and W. E. Dean, 2000, Parent brine of the Castile evaporites (Upper Permian), Texas and New Mexico: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 749–761.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1981, Source-rock potential of evaporitic environment: Bulletin American Association of Petroleum Geologists, v. 65, p. 181–190.

    Google Scholar 

  • Kominz, M. A., J. V. Browning, K. G. Miller, P. J. Sugarman, S. Misintseva, and C. R. Scotese, 2008, Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis: Basin Research, v. 20.

    Google Scholar 

  • Kovalevych, V. M., T. Marshall, T. M. Peryt, O. Y. Petrychenko, and S. A. Zhukova, 2006b, Chemical composition of seawater in Neoproterozoic: Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia): Precambrian Research, v. 144, p. 39–51.

    Google Scholar 

  • Kraemer, B., D. Adelmann, M. Alten, W. Schnurr, K. Erpenstein, E. Kiefer, P. van den Bogaard, and K. Gorler, 1999, Incorporation of the Paleogene foreland into the Neogene Puna plateau: The Salar de Antofalla area, NW Argentina: Journal of South American Earth Sciences, v. 12, p. 157–182.

    Google Scholar 

  • Krijgsman, W., M. M. Blanc-Valleron, R. Flecker, F. J. Hilgen, T. J. Kouwenhoven, D. Merle, F. Orszag-Sperber, and J. M. Rouchy, 2002, The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus): Earth & Planetary Science Letters, v. 194, p. 299–310.

    Google Scholar 

  • Krijgsman, W., A. R. Fortuin, F. J. Hilgen, and F. J. Sierro, 2001, Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity: Sedimentary Geology, v. 140, p. 43–60.

    Google Scholar 

  • Krijgsman, W., F. J. Hilgen, I. Raffi, F. J. Sierro, and D. S. Wilson, 1999, Chronology, causes and progression of the Messinian salinity crisis: Nature, v. 400, p. 652–655.

    Google Scholar 

  • Ku, T. L., S. D. Luo, T. K. Lowenstein, J. R. Li, and R. J. Spencer, 1998, U-series chronology of lacustrine deposits in Death Valley, California: Quaternary Research, v. 50, p. 261–275.

    Google Scholar 

  • LaClair, D., and T. K. Lowenstein, 2009, Fluid inclusion microthermometry from halite in the Eocene Green River Formation, Piceance Creek basin, Colorado, USA: evidence for a perennial stratified saline lake. : Geol. Soc. Am. Annu. Meet., Abstracts with Programs, 41, 512.

    Google Scholar 

  • Lamb, M. P., W. W. Fischer, T. D. Raub, J. T. Perron, and P. M. Myrow, 2012, Origin of giant wave ripples in snowball Earth cap carbonate: Geology, v. 40, p. 827–830.

    Google Scholar 

  • Lambiase, J. J., 1990, A model for tectonic controls of lacustrine stratigraphic sequences in continental rift basins, in B. J. Katz, ed., Lacustrine Basin Exploration – Case studies and modern analogues, v. 50: Tulsa, OK, American Association Petroleum Geologists Memoir, p. 265–276.

    Google Scholar 

  • Land, L. S., R. A. Eustice, L. E. Mack, and J. Horita, 1995, Reactivity of evaporites during burial – An example from the Jurassic of Alabama: Geochimica et Cosmochimica Acta, v. 59, p. 3765–3778.

    Google Scholar 

  • Land, L. S., J. A. Kupecz, and L. E. Mack, 1988, Louann Salt geochemistry (Gulf of Mexico sedimentary basin, U.S.A.); a preliminary synthesis: Chemical Geology, v. 74, p. 25–35.

    Google Scholar 

  • Langdon, G. S., and J. K. Hall, 1994, Devonian-Carboniferous Tectonics and Basin Deformation in the Cabot Strait Area, Eastern Canada: Bulletin American Association Petroleum Geologists, v. 78, p. 1748–1774.

    Google Scholar 

  • Lawver, L. A., and L. M. Gahagan, 2003, Evolution of Cenozoic seaways in the circum-Antarctic region: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 198, p. 11–37.

    Google Scholar 

  • Legler, B., J. W. Schneider, U. Gebhardt, D. Merten, and R. Gaupp, 2011, Lake deposits of moderate salinity as sensitive indicators of lake level fluctuations: Example from the Upper Rotliegend saline lake (Middle-Late Permian, Northeast Ger-many): Sedimentary Geology, v. 234, p. 56–69.

    Google Scholar 

  • Lehmann, C., D. A. Osleger, and I. P. Montanez, 1998, Controls on cyclostratigraphy of Lower Cretaceous carbonates and evaporites, Cupido and Coahuila platforms, northeastern Journal of Sedimentary Research, v. 68, p. 1109–1130.

    Google Scholar 

  • Leibold, A. W., 1992, Sedimentological and geochemical constraints on Niagara/Salina deposition, Michigan Basin: Doctoral thesis, University of Michigan, 280 p.

    Google Scholar 

  • Leibold, A. W., and P. D. Howell, 1991, Death of a carbonate basin; the Niagara-Salina transition in the Michigan Basin (abs): American Association of Petroleum Geologists Bulletin, v. 75, p. 619.

    Google Scholar 

  • Leleu, S., and A. J. Hartley, 2010, Controls on the stratigraphic development of the Triassic Fundy Basin, Nova Scotia: implications for the tectonostratigraphic evolution of Triassic Atlantic rift basins: Journal of the Geological Society, v. 167, p. 437–454.

    Google Scholar 

  • Leyrer, K., C. Strohmenger, K. Rockenbauch, and T. Bechstaedt, 2001, High resolution forward stratigraphic modeling od Ca-2 carbonate platforms and off-platform highs (Upper Permian, Northern Germany), Springer Verlag.

    Google Scholar 

  • Li, Z., H. Goldstein, and E. K. Franseen, 2013, Ascending fresh-water-mesohaline mixing; a new scenario for dolomitization: Journal of Sedimentary Research, v. 83, p. 277–283.

    Google Scholar 

  • Li, Z. X., C. M. Powell, and R. Bowman, 1993, Timing and genesis of Hamersley iron-ore deposits: Exploration Geophysics, v. 24, p. 631–636.

    Google Scholar 

  • Lindsay, J. F., 1987, Upper Proterozoic evaporites in the Amadeus Basin, central Australia, and their role in basin tectonics: Geological Society of America Bulletin, v. 99, p. 852–865.

    Google Scholar 

  • Lindsay, R. F., D. L. Cantrell, G. W. Hughes, T. H. Keith, H. W. Mueller III, and S. D. Russell, 2006, Ghawar Arab-D reservoir: Widespread porosity in shoaling-upward carbonate cycles, Saudi Arabia in P. M. Harris, and L. J. Weber, eds., Giant hydrocarbon reservoirs of the world: From rocks to reservoir characterization and modeling, American Association of Petroleum Geologists Memoir 88/SEPM Special Publication, p. 97–137.

    Google Scholar 

  • Lofi, J., J. Déverchère, V. Gaullier, H. Gillet, C. Gorine, P. Guennoc, L. Loncke, A. Maillard, F. Sage, and I. Thinon, 2011, Atlas of the Messinian Seismic Markers in the Mediterraneanand Black Seas: Mèmoires de la Société géologique de France, v. 179.

    Google Scholar 

  • Lofi, J., C. Gorini, S. Berne, G. Clauzon, A. T. Dos Reis, W. B. F. Ryan, and M. S. Steckler, 2005, Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis: Marine Geology, v. 217, p. 1–30.

    Google Scholar 

  • Logan, B. W., 1987, The MacLeod evaporite basin, western Australia; Holocene environments, sediments and geological evolution: Tulsa, OK, American Association of Petroleum Geologists Memoir 44, 140 p.

    Google Scholar 

  • Loncke, L., V. Gaullier, J. Mascle, B. Vendeville, and L. Camera, 2006, The Nile deep-sea fan: An example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features: Marine and Petroleum Geology, v. 23, p. 297–307.

    Google Scholar 

  • Loucks, R. G., and M. W. Longman, 1982, Lower Cretaceous Ferry Lake Anhydrite, Fairway Field, East Texas; product of shallow-subtidal deposition, in C. R. Handford, R. G. Loucks, and G. R. Davies, eds., Depositional and diagenetic spectra of evaporites; a core workshop., v. 3: Tulsa, OK, SEPM, p. 130–173.

    Google Scholar 

  • Loucks, R. G., and J. F. Sarg, 1993, Carbonate sequence stratigraphy : recent developments and applications, v. American Association of Petroleum Geologists Memoir 57: Tulsa, Oklahoma, U.S.A.

    Google Scholar 

  • Lu, F. H., and W. J. Meyers, 1998, Massive dolomitisation of a Late Miocene carbonate platform – A case of mixed evaporative brines with meteoric water, Nijar, Spain: Sedimentology, v. 45, p. 263–277.

    Google Scholar 

  • Lu, F. H., W. J. Meyers, and G. N. Hanson, 2002, Trace elements and environmental significance of Messinian gypsum deposits, the Nijar Basin, southeastern Spain: Chemical Geology, v. 192, p. 149–161.

    Google Scholar 

  • Lucia, F. J., 1972, Recognition of evaporite-carbonate shoreline sedimentation, in J. K. Rigby, and W. K. Hamblin, eds., Recognition of ancient sedimentary environments, v. 16, Soc. Econ. Paleontol. Mineral., Spec. Publ., p. 190–191.

    Google Scholar 

  • Lugli, S., V. Manzi, and M. Roveri, 2008, New facies interpretation of the Messinian evaporites in the Mediterranean, in F. e. Briand, ed., The Messinian Salinity Crisis from Mega-deposits to Microbiology—A Consensus Report: CIESM Workshop Monographs, Monaco, v. 33, p. 67–72.

    Google Scholar 

  • Lugli, S., B. C. Schreiber, Z. Gvirtzman, V. Manzi, and M. Roveri, 2012, Evidence of clastic evaporites in the canyons of the Levant basin (Israel): implications for the Messinian salinity crisis: EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-6813.

    Google Scholar 

  • Lynch, G., and J. V. A. Keller, 1998, Association between detachment faulting and salt diapirs in the Devonian-Carboniferous Maritimes Basin, Atlantic Canada: Bulletin of Canadian Petroleum Geology, v. 46, p. 189–209.

    Google Scholar 

  • Magaritz, M., 1987, A new explanation for cyclic deposition in marine evaporite basins; meteoric water input: Chemical Geology, v. 62, p. 239–250.

    Google Scholar 

  • Magee, J. W., J. M. Bowler, G. H. Miller, and D. L. G. Williams, 1995, Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia: Palaeogeography Palaeoclimatology Palaeoecology, v. 113, p. 3–42.

    Google Scholar 

  • Maglione, G., 1980, An example of Recent continental evaporitic sedimentation; the Chadian Basin (Africa), in G. Busson, ed., Evaporite deposits; illustration and interpretation of some environmental sequences: London, Editions Technip, marketed Graham & Trotman, p. 5–9 & 74–91(photos).

    Google Scholar 

  • Maiklem, W. R., 1971, Evaporative drawdown – a mechanism for water level lowering and diagenesis in the Elk Point Basin: Bulletin Canadian Petroleum Geology, v. 19, p. 487–503.

    Google Scholar 

  • Manega, P. C., and S. Bieda, 1987, Modern sediments of Lake Natron, Tanzania: Sciences Geologiques – Bulletin, v. 40, p. 83–95.

    Google Scholar 

  • Mann, S. D., 1988, Subaqueous Evaporites of the Buckner Member, Haynesville Formation, Northeastern Mobile County, Alabama: Gulf Coast Association of Geological Societies Transactions, v. 38, p. 187–196.

    Google Scholar 

  • Manspeizer, W., 1982, Triassic-Liassic basins and climate of the Atlantic passive margins: International Journal of Earth Sciences, v. 71, p. 895–917.

    Google Scholar 

  • Manzi, V., S. Lugli, F. R. Lucchi, and M. Roveri, 2005, Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out?: Sedimentology, v. 52, p. 875–902.

    Google Scholar 

  • Manzi, V., S. Lugli, M. Roveri, B. C. Schreiber, and R. Gennari, 2011, The Messinian “Calcare di Base” (Sicily, Italy) revisited: Geological Society of America Bulletin, v. 123, p. 347–370.

    Google Scholar 

  • Martin, J. M., J. C. Braga, C. Betzler, and T. Brachert, 1996, Sedimentary model and high-frequency cyclicity in a Mediterranean, shallow-shelf, temperate-carbonate environment (uppermost Miocene, Agua Amarga Basin, southern Spain: Sedimentology, v. 43, p. 263–277.

    Google Scholar 

  • Mazzoli, S., 1994, Early deformation features in syn-orogenic Messinian sediments of the northern Marchean Apennines (Italy): Annales Tectonicae, v. 8, p. 134–147.

    Google Scholar 

  • McGowran, B., G. Moss, and A. Beecroft, 1992, Late Eocene and early Oligocene in southern Australia: local neritic signals of global oceanic changes, in D. R. Prothero, and W. A. Berggren, eds., Late Eocene-Oligocene Climatic and Biotic Evolution: Princeton, NJ, Princeton University Press, p. 178–201.

    Google Scholar 

  • McLaren, S., M. W. Wallace, and T. Reynolds, 2012, The Late Pleistocene evolution of palaeo megalake Bungunnia, southeastern Australia: A sedimentary record of fluctuating lake dynamics, climate change and the formation of the modern Murray River: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 317‚Äì318, p. 114–127.

    Google Scholar 

  • Melim, L. A., 1991, The origin of dolomite in the Permian (Guadalupian) Capitan Formation, Delaware Basin, west Texas and New Mexico: implications for dolomitization models: Doctoral thesis, Southern Methodist University, Dallas, Texas, 200 p.

    Google Scholar 

  • Melim, L. A., and P. A. Scholle, 2002, Dolomitization of the Capitan Formation forereef facies (Permian, west Texas and New Mexico): seepage reflux revisited: Sedimentology, v. 49, p. 1207–1227.

    Google Scholar 

  • Menning, M., 1995, A numerical time scale for the Permian and Triassic periods: An integrative time analysis, in P. A. Scholle, T. Peryt, and D. S. Ulmer-Scholle, eds., The Permian of Northern Pangea, 1. Paleogeography, Paleoclimates, Stratigraphy: Berlin, Springer Verlag, p. 77–97.

    Google Scholar 

  • Merabet, O., and A. Popov, 1971, Les bassins saliferes de l’Algerie, in G. Richter-Bernberg, ed., Geology of saline deposits: Paris, UNESCO, p. 167–176.

    Google Scholar 

  • Meshref, W. M., 1990, Tectonic framework, in R. Said, ed., The Geology of Egypt: Rotterdam, A. A. BALKEMA, p. 113–156.

    Google Scholar 

  • Mesolella, K. J., J. D. Robinson, L. M. McCormick, and A. R. Ormiston, 1974, Cyclic deposition of Silurian carbonates and evaporites in Michigan Basin. Am. Assoc. Petrol. Geol. Bull. 58, 34–62.

    Google Scholar 

  • Meyers, W. J., F. H. Lu, and J. K. Zachariah, 1997, Dolomitization by mixed evaporitic brines and freshwater, Upper Miocene carbonates, Nijar, Spain: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67 A, p. 898–912.

    Google Scholar 

  • Miall, A. D., 2010, The Geology of Stratigraphic Sequences: Berlin Heidelberg, Springer

    Google Scholar 

  • Michalzik, D., 1996, Lithofacies, diagenetic spectra and sedimentary cycles of Messinian (late Miocene) evaporites in SE Spain: Sedimentary Geology, v. 106, p. 203–222.

    Google Scholar 

  • Miller, K. G., G. S. Mountain, J. D. Wright, and J. V. Browning, 2011, A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records: Oceanography, v. 24, p. 40–53.

    Google Scholar 

  • Milroy, P. G., and V. P. Wright, 2000, A highstand oolitic sequence and associated facies from a Late Triassic lake basin, southwest England: Sedimentology, v. 47, p. 187–209.

    Google Scholar 

  • Mirandagasca, M. A., J. A. Gomezcaballero, and C. J. Eastoe, 1998, Borate deposits of Northern Sonora, Mexico – Stratigraphy, tectonics, stable isotopes and fluid inclusions: Economic Geology, v. 93, p. 510–523.

    Google Scholar 

  • Mohriak, W., M. Nemcok, and G. Enciso, 2008, South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of SE Brazil: Geological Society, London, Special Publications, v. 294, p. 365–398.

    Google Scholar 

  • Morris, R. C., 1985, Genesis of iron ore in banded iron-formation by supergene and supergene metamorphic processes – a conceptual model, in W. K.H., ed., Handbook of strata-bound and stratiform ore deposits, v. 13, Elsevier, p. 73–235.

    Google Scholar 

  • Morris, R. C., 1993, Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia: Precambrian Research, v. 60, p. 243–286.

    Google Scholar 

  • Müller, D. W., and K. J. Hsu, 1987, Event stratigraphy and paleoceanography in the Fortuna Basin (Southeast Spain): a scenario for the Messinian Salinity Crisis: Paleoceanography, v. 2, p. 679–696.

    Google Scholar 

  • Mutti, M., and J. A. T. Simo, 1993, Stratigraphic patterns and cycle-related diagenesis of upper Yates Formation, Permian, Guadalupe Mountains, in R. G. Loucks, and J. F. Sarg, eds., Carbonate sequence stratigraphy: recent developments and applications, v. 57, Memoir American Association Petroleum Geologists, p. 515–534.

    Google Scholar 

  • Nanson, G. C., R. A. Callen, and D. M. Price, 1998, Hydroclimatic interpretation of Quaternary shorelines on south Australian playas: Paleogeography Paleoclimatology Paleoecology, v. 144, p. 281–305.

    Google Scholar 

  • Nicolaides, S., 1995, Origin and modification of Cambrian dolomites (Red Heart Dolomite and Arthur Creek Formation), Georgina Basin, central Australia: Sedimentology, v. 42, p. 249–266.

    Google Scholar 

  • Nurmi, R. D., and G. M. Friedman, 1977, Sedimentology and depositional environments of basin-center evaporites, lower Salina Group (Upper Silurian), Michigan Basin, in J. H. Fisher, ed., Reefs and Evaporites—Concepts and Depositional Models American Association of Petroleum Geologiststudies in Geology 5: Tulsa, OK, p. 23–52.

    Google Scholar 

  • Orszag-Sperber, F., 2006, Changing perspectives in the concept of “Lago-Mare” in Mediterranean Late Miocene evolution: Sedimentary Geology, v. 188–189, p. 259–277.

    Google Scholar 

  • Orszag-Sperber, F., A. Caruso, M.-M. Blanc-Valleron, D. Merle, and J. M. Rouchy, 2009, The onset of the Messinian salinity crisis: Insights from Cyprus sections: Sedimentary Geology, v. 217, p. 52–64.

    Google Scholar 

  • Orti, F., C. Helvaci, L. Rosell, and I. Gundogan, 1998, Sulphate-borate relations in an evaporitic lacustrine environment – the Sultancayir gypsum (Miocene, western Anatolia): Sedimentology, v. 45, p. 697–710.

    Google Scholar 

  • Orti, F., and L. Rosell, 2000, Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain): Sedimentology, v. 47, p. 665–685.

    Google Scholar 

  • Orti, F., L. Rosell, and P. Anadon, 2003, Deep to shallow lacustrine evaporites in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): an occurrence of pelletal gypsum rhythmites: Sedimentology, v. 50, p. 361–386.

    Google Scholar 

  • OrtÍ, F., L. Rosell, E. Playa, and J. M. Salvany, 2012, Meganodular anhydritization: a new mechanism of gypsum to anhydrite conversion (Palaeogene–Neogene, Ebro Basin, North-east Spain): Sedimentology, v. 59, p. 1257–1277.

    Google Scholar 

  • Ottes, W., P. Lambregts, and A. El-Barkooky, 2008, The Messinian salinity crisis in the Nile delta: chasing shallow marine reservoirs in a deep-water setting, in F. Briand, ed., The Messinian Salinity Crisis from Mega-deposits to Microbiology — A Consensus Report: CIESM workshop monograph, v. 33, p. 107–110.

    Google Scholar 

  • Owen, R. B., R. Crossley, T. C. Johnson, D. Tweddle, L. Kornfield, S. Davison, D. H. Eccles, and D. E. Engstrom, 1990, Major low levels of Lake Malawi and implications for speciation rates in cichlid fishes: Proc. Royal Soc. London Ser. B., p. 240–519.

    Google Scholar 

  • Pache, M., J. Reitner, and G. Arp, 2001, Geochemical evidence for the formation of a large Miocene “travertine” mound at a sublacustrine spring in a soda lake (Wallerstein Castle rock, Nördlinger Ries, Germany): Facies, v. 45, p. 211–230.

    Google Scholar 

  • Paik, I. S., and H. J. Kim, 1998, Subaerial lenticular cracks in Cretaceous lacustrine deposits, Korea: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 80–87.

    Google Scholar 

  • Palma, R. M., D. A. Kietzmann, G. S. Bressan, J. Martín-Chivelet, J. López-Gomez, M. E. Farias, and M. P. Iglesias Llanos, 2013, Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina: Journal of South American Earth Sciences, v. 47, p. 1–11.

    Google Scholar 

  • Paul, J., 1999, Evolution of a Permo-Carboniferous Basin: The Ilfeld Basin and its relationship to adjoining Permo-Carboniferous structures in Central Germany: Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen, v. 214, p. 211–236.

    Google Scholar 

  • Pegrum, R. M., and N. Mounteney, 1978, Rift Basins Flanking North Atlantic Ocean and Their Relation to North Sea Area: Bulletin American Association Petroleum Geologists, v. 62, p. 419–441.

    Google Scholar 

  • Pérez-Asensio, J. N., J. Aguirre, G. Jiménez-Moreno, G. Schmiedl, and J. Civis, 2013, Glacioeustatic control on the origin and cessation of the Messinian salinity crisis: Global and Planetary Change, v. 111, p. 1–8.

    Google Scholar 

  • Peryt, T. M., 2000, Resedimentation of basin centre sulphate deposits: Middle Miocene Badenian of Carpathian Foredeep, southern Poland: Sedimentary Geology, v. 134, p. 331–342.

    Google Scholar 

  • Peryt, T. M., and V. M. Kovalevich, 1997, Association of redeposited salt breccias and potash evaporites in the Lower Miocene of Stebnyk (Carpathian foredeep, West Ukraine): Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67 A, p. 913–922.

    Google Scholar 

  • Peryt, T. M., and P. A. Scholle, 1996, Regional setting and role of meteoric water in dolomite formation and diagenesis in an evaporite basin – Studies in the Zechstein (Permian) of Poland: Sedimentology, v. 43, p. 1005–1023.

    Google Scholar 

  • Petrychenko, O. Y., T. M. Peryt, and E. I. Chechel, 2005, Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites: Chemical Geology, v. 219, p. 149–161.

    Google Scholar 

  • Petty, A. J., 1995, Ferry Lake, Rodessa, and Punta Gorda Anhydrite Bed Correlation, Lower Cretaceous, Offshore Eastern Gulf of Mexico: Gulf Coast Association of Geological Societies Transactions, v. 45, p. 487–495.

    Google Scholar 

  • Pittman, J. G., 1985, Correlation of beds within the Ferry Lake Anhydrite of the Gulf Coastal Plain: Transactions Gulf Coast Association of Geological Societies, v. 35, p. 251–260.

    Google Scholar 

  • Playa, E., D. I. Cendon, A. Trave, A. R. Chivas, and A. Garcia, 2007, Non-marine evaporites with both inherited marine and continental signatures: The Gulf of Carpentaria, Australia, at ~ 70 ka: Sedimentary Geology, v. 201, p. 267–285.

    Google Scholar 

  • Playa, E., F. Orti, and L. Rosell, 2000, Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence: Sedimentary Geology, v. 133, p. 135–166.

    Google Scholar 

  • Polkowski, G. R., 1997, Degradation of reservoir quality by clay content, Unayzah Formation, Central Saudi Arabia: Geo-Arabia, v. 2, p. 49–64.

    Google Scholar 

  • Porter, R. J., and R. W. Gallois, 2008, Identifying fluvio-lacustrine intervals in thick playa-lake successions; an integrated sedimentology and ichnology of arenaceous members in the Mid-Late Triassic Mercia Mudstone Group of South-West England, UK: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 270, p. 381–398.

    Google Scholar 

  • Posamentier, H. W., and D. P. James, 1993, An overview of sequence-stratigraphic concepts; uses and abuses, in H. W. Posamentier, C. P. Summerhayes, B. U. Haq, and G. P. Allen, eds., Sequence stratigraphy and facies associations, v. 18: Oxford, UK, Special Publication of the International Association of Sedimentologists, p. 3–18.

    Google Scholar 

  • Powell, C. M., N. H. S. Oliver, Z. X. Li, D. M. Martin, and J. Ronaszeki, 1999, Synorogenic hydrothermal origin for giant Hamersley iron oxide orebodies.: Geology, v. 27, p. 175–178.

    Google Scholar 

  • Powell, C. M., W. V. Preiss, C. G. Gatehouse, B. Krapez, and Z. X. Li, 1994, South Australia record of a Rodinian epicontinental basin and its Mid-Proterozoic breakup (≈700 Ma) to form the Palaeopacific ocean: Tectonophysics, v. 237, p. 113–140.

    Google Scholar 

  • Préat, A., K. Kolo, J.-P. Prian, and F. Delpomdor, 2010, A peritidal evaporite environment in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin): Precambrian Research, v. 177, p. 253–265.

    Google Scholar 

  • Purser, B. H., and G. Evans, 1973, Regional sedimentation along the Trucial Coast, southeastern Persian Gulf, in B. H. Purser, ed., The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea: New York, Springer Verlag, p. 199–210.

    Google Scholar 

  • Pysklywec, R. N., and J. X. Mitrovica, 2000, Mantle flow mechanisms of epeirogeny and their possible role in the evolution of the Western Canada Sedimentary Basin: Canadian J. Earth Science, v. 37.

    Google Scholar 

  • Rack, F. R., 1993, A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system: Tectonophysics, v. 222, p. 397–415.

    Google Scholar 

  • Ramage, J. R., 1987, Lithofacies, regional stratigraphy, and depositional systems of the Clear Fork Group (Permian) Palo Duro Basin, Texas Panhandle: Masters thesis, University of Texas at Austin.

    Google Scholar 

  • Raup, O. B., and R. J. Hite, 1993, Preliminary data on the lithology, bromine distribution, and insoluble minerals from the A-1 Evaporite Formation, Salina Group, in the JEM Petroleum Corporation, Bruggers 3–7 Core, Missaukee County, Michigan: Open File Report U. S. Geological Survey, v. 93–236, p. 15 p.

    Google Scholar 

  • Read, J. F., 1985, Carbonate platform facies models.: Bulletin American Association of Petroleum Geologists, v. 69, p. 1–21.

    Google Scholar 

  • Read, J. F., and A. D. Horbury, 1993, Eustatic and tectonic controls on porosity evolution beneath sequence-bounding unconformities and parasequence disconformities on carbonate platforms, in A. D. Horbury, and A. G. Robinson, eds., Diagenesis and basin development, v. 36, American Association of Petroleum Geologists, Studies in Geology, p. 155–197.

    Google Scholar 

  • Read, J. F., C. Kerans, L. J. Weber, J. F. Sarg, and F. M. Wright, 1995, Milankovitch sea-level changes, cycles, and reservoirs on carbonate platforms in greenhouse and ice-house worlds: SEPM/Society for Sedimentary Geology Short Course Notes, v. 35, 81 pp p.

    Google Scholar 

  • Redfern, J., P. M. Shannon, B. P. J. Williams, S. Tyrrell, S. Leleu, I. Fabuel-Perez, C. Baudon, K. Stolfova, D. Hodgetts, X. Van Lanen, A. Speksnijder, P. D. W. Haughton, and J. S. Daly, 2010, An integrated study of Permo-Triassic basins along the North Atlantic passive margin: implication for future exploration, in B. A. Vining, and S. C. Pickering, eds., Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference: London, Geological Society, p. 921–936.

    Google Scholar 

  • Reinhardt, L., and W. Ricken, 2000, The stratigraphic and geochemical record of Playa Cycles: monitoring a Pangaean monsoon-like system: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 161, p. 205–227.

    Google Scholar 

  • Richter-Bernburg, G., 1957, Isochrone Warven im Anhydrit des Zechstein 2: Germany, Geol. Landesanst., Geol. Jb. Bd.

    Google Scholar 

  • Richter-Bernburg, G., 1986, Zechstein 1 and 2 anhydrites; facts and problems of sedimentation, in G. M. Harwood, and D. B. Smith, eds., The English Zechstein and related topics: London, UK, Geological Society Special Publication No. 22, p. 157–163.

    Google Scholar 

  • Riding, R., J. C. Braga, and J. M. Martin, 1999, Late Miocene Mediterranean desiccation: topography and significance of the ‘Salinity Crisis’ erosion surface on-land in southeast Spain: Sedimentary Geology, v. 123, p. 1–7.

    Google Scholar 

  • Riding, R., J. C. Braga, J. M. Martin, and I. M. Sanchezalmazo, 1998, Mediterranean Messinian salinity crisis- Constraints from a coeval marginal basin, Sorbas, southeastern Spain: Marine Geology, v. 146, p. 1–20.

    Google Scholar 

  • Risacher, F., and B. Fritz, 1991, Quaternary geochemical evolution of the salars of Uyuni and Coipasa, central Altiplano, Bolivia: Chemical Geology, v. 90, p. 211–231.

    Google Scholar 

  • Risacher, F., and B. Fritz, 2000, Bromine geochemistry of salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia: Chemical Geology, v. 167, p. 373–392.

    Google Scholar 

  • Roberts, G., and D. Peace, 2007, Hydrocarbon plays and prospectivity of the Levantine basin, offshore Lebanon and Syria from modern seismic data: GeoArabia, v. 12, p. 99–124.

    Google Scholar 

  • Robertson, A. H. F., S. Eaton, E. J. Follows, and A. S. Payne, 1995, Depositional processes and basin analysis of Messinian evaporites in Cyprus: Terra Nova, v. 7, p. 233–253.

    Google Scholar 

  • Rodríguez-Aranda, J. P., and J. P. Calvo, 1998, Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite succesions: Palaeogeography Palaeoclimatology Palaeoecology, v. 140, p. 383–399.

    Google Scholar 

  • Roehler, H. W., 1993, Eocene climates, depositional environments, and geography, greater Green River Basin, Wyoming, Utah, and Colorado: U.S. Geological Survey Professional Paper, v. 1506-F, p. 74.

    Google Scholar 

  • Rouchy, J. M., G. Camoin, J. Casanova, and J. F. Deconinck, 1993, The central palaeo-Andean basin of Bolivia (Potosi area) during the Late Cretaceous and early Tertiary: reconstruction of ancient saline lakes using sedimentological, paleoecological and stable isotope records: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 105, p. 179–198.

    Google Scholar 

  • Rouchy, J. M., D. Noel, A. M. A. Wali, and M. A. M. Aref, 1995a, Evaporitic and biosiliceous cyclic sedimentation in the Miocene of the Gulf of Suez; depositional and diagenetic aspects: Sedimentary Geology, v. 94, p. 277–297.

    Google Scholar 

  • Rouchy, J. M., C. Pierre, and F. Sommer, 1995b, Deep-water resedimentation of anhydrite and gypsum deposits in the Middle Miocene (Belayim Formation) of the Red Sea: Sedimentology, v. 42, p. 267–282.

    Google Scholar 

  • Rouchy, J. M., and A. Caruso, 2006, The Messinian salinity crisis in the Mediterranean basin: Are assessment of the data and an integrated scenario: Sedimentary Geology, v. 188, p. 35–67.

    Google Scholar 

  • Rouchy, J. M., F. Orszag-Sperbe, M. M. Blanc-Valleron, C. Pierre, M. Rivier, N. Combourieu-Nebout, and I. Panayides, 2001, Paleoenvironmental changes at the Messinian-Pliocene boundary in the eastern Mediterranean (southern Cyprus basins): significance of the Messinian Lago-Mare: Sedimentary Geology, v. 145, p. 93–117.

    Google Scholar 

  • Rouchy, J. M., and J. P. Saint-Martin, 1992, Late Miocene events in the Mediterranean as recorded by carbonate-evaporite relations: Geology, v. 20, p. 629–632.

    Google Scholar 

  • Roveri, M., S. Lugli, V. Manzi, and B. C. Schreiber, 2008, The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis: Terra Nova, v. 20, p. 483–488.

    Google Scholar 

  • Roveri, M., V. Manzi, F. R. Lucchi, and S. Rogledi, 2003, Sedimentary and tectonic evolution of the Vena del Gesso basin (Northern Apennines, Italy): Implications for the onset of the Messinian salinity crisis: Geological Society of America Bulletin, v. 115, p. 387–405.

    Google Scholar 

  • Roveri, M., V. Manzi, S. Lugli, C. B. Schreiber,A. Caruso, J.-M. Rouchy, S. M. Iaccarino, R. Gennari, F. P. Vitale, and F. Ricci Lucchi, 2006, Clastic vs. primary precipitated evaporites in the Messinian Sicilian basins: L’Ateneo parmense. Acta naturalia: organo della Società di medicina e scienze naturali di Parma 02/2013, v. 42, p. 125–199.

    Google Scholar 

  • Royer, D. L., D. J. Beerling, R. A. Berner, I. P. Montanez, and N. J. Tabor, 2004, as a primary driver of Phanerozoic climate: GSA Today, v. 14, p. 4–10.

    Google Scholar 

  • Rush, J., and C. Kerans, 2010, Stratigraphic Response Across a Structurally Dynamic Shelf: The Latest Guadalupian Composite Sequence at Walnut Canyon, New Mexico, U.S.A: Journal of Sedimentary Research, v. 80, p. 808–828.

    Google Scholar 

  • Said, R., 1993, The River Nile: Geology, hydrology and utilization: Oxford, Pergamon Press.

    Google Scholar 

  • Salvador, A., 1987, Late Triassic-Jurassic paleogeography and origin of the Gulf of Mexico basin: Bulletin American Association of Petroleum Geologists, v. 71, p. 419–451.

    Google Scholar 

  • Salvany, J. M., J. Garcia-Veigas, and F. Orti, 2007, Glauberite-halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain): Sedimentology, v. 54, p. 443–467.

    Google Scholar 

  • Salvany, J. M., A. Munoz, and A. Perez, 1994, Nonmarine evaporitic sedimentation and associated diagenetic processes of the southwestern margin of the Ebro Basin (lower Miocene), Spain: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 64, p. 190–203.

    Google Scholar 

  • Salvany, J. M., and F. Orti, 1994, Miocene glauberite deposits of Alcanadre, Ebro Basin, Spain: sedimentary and diagenetic processes, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, SEPM/Society for Sedimentary Geology Special Publication, v. 50, p. 203–215.

    Google Scholar 

  • Sarg, J. F., 1981, Petrology of the carbonate-evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian), Southeast New Mexico: Journal of Sedimentary Petrology, v. 51, p. 73–96.

    Google Scholar 

  • Sarg, J. F., 2001, The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review: Sedimentary Geology, v. 140, p. 9–42.

    Google Scholar 

  • Schenk, P., P. Vonbitter, and R. Matsumoto, 1994, Deep-basin Deep-water carbonate-evaporite deposition of a saline giant – Loch Macumber (Visean), Atlantic Canada: Carbonates & Evaporites, v. 9, p. 187–210.

    Google Scholar 

  • Schlager, W., and H. Bolz, 1977, Clastic accumulation of sulfate evaporites in deep water: Journal of Sedimentary Petrology, v. 47, p. 600–609.

    Google Scholar 

  • Schmid, R. M., 1988a, Lake Torrrens Brine: Hydrobiologia, v. 158, p. 267–269.

    Google Scholar 

  • Schmid, R. M., 1988b, Lake Torrens halite accumulation (South Australia): Zeitschrift der Deutschen Geologischen Gesellschaft, v. 139, p. 289–296.

    Google Scholar 

  • Scholle, P. A., L. Stemmerik, D. Ulmer-Scholle, G. Diliegro, and F. H. Henk, 1993, Palaeokarst-influenced depositional and diagenetic patterns in Upper Permian carbonates and evaporites, Karstryggen Area, Central East Greenland: Sedimentology, v. 40, p. 895–918.

    Google Scholar 

  • Schreiber, B. C., 1988a, Subaqueous evaporite deposition, in B. C. Schreiber, ed., Evaporites and hydrocarbons: New York, Columbia University Press.

    Google Scholar 

  • Schröder, S., B. C. Schreiber, J. E. Amthor, and A. Matter, 2003, A depositional model for the terminal Neoproterozoic-Early Cambrian Ara Group evaporites in south Oman: Sedimentology, v. 50, p. 879–898.

    Google Scholar 

  • Schubel, K. A., and T. K. Lowenstein, 1997, Criteria for the recognition of shallow-perennial-saline-lake halites based on Recent sediments from the Qaidam Basin, western China: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 74–87.

    Google Scholar 

  • Seard, C., G. Camoin, J.-M. Rouchy, and A. Virgone, 2013, Composition, structure and evolution of a lacustrine carbonate margin dominated by microbialites: Case study from the Green River formation (Eocene; Wyoming, USA): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 381–382, p. 128–144.

    Google Scholar 

  • Sears, S. O., and F. J. Lucia, 1979, Reef growth model for Silurian pinnacle reefs, northern Michigan reef trend: Geology, v. 3, p. 299–302.

    Google Scholar 

  • Sears, S. O., and F. J. Lucia, 1980, Dolomitization of Northern Michigan Niagara reefs by brine refluxion and fresh water/sea water mixing, in D. H. Zenger, J. B. Dunham, and R. L. Ethington, eds., Concepts and models of dolomitization, Society of Economic Paleontologists and Mineralogists, Special Publication 28, p. 215–235.

    Google Scholar 

  • Senalp, M., and A. Al-Duaiji, 1995, Stratigraphy and sedimentation of the Unayzah reservoirs, Central Saudi Arabia, in M. I. Al-Husseini, ed., Middle East Petroleum Geosciences Conference, GEO’94, v. 1: Manama, Bahrain, Gulf Petrolink.

    Google Scholar 

  • Shackleton, N. J., J. Imbrie, and M. A. Hall, 1983, Oxygen and carbon isotope record of East Pacific core V19-3-1: implications for the formation of deep water in the late Pleistocene North Atlantic: Earth and Planetary Science Letters, v. 65, p. 233–244.

    Google Scholar 

  • Sharland, P. R., R. Archer, D. M. Casey, R. B. Davies, S. H. Hall, A. P. Heward, A. D. Horbury, and M. D. Simmons, 2001, Arabian Plate Sequence Stratigraphy: GeoArabia Special Publication 2: Bahrain, Gulf Petrolink, 371 p.

    Google Scholar 

  • Shaw, A. B., 1964, Time in Stratigraphy: New York, Mc-Graw-Hill, 365 p.

    Google Scholar 

  • Shaw, A. B., 1977, A review of some aspects of evaporite deposition: Mountain Geologist, v. 14, p. 1–16.

    Google Scholar 

  • Simeonova, A. P., and R. P. Iasky, 2005, Seismic mapping, salt deformation, and hydrocarbon potential of the central western Officer Basin, Western Basin: Geological Survey of Western Australia -Report 98, 50 pp.

    Google Scholar 

  • Singer, A., K. Stahr, and M. Zarei, 1998, Characteristics and origin of sepiolite (Meerschaum) from central Somalia: Clay Minerals, v. 33, p. 349–362.

    Google Scholar 

  • Slowakiewicz, M., and Z. Mikolajewski, 2009, Sequence stratigraphy of the Upper Permian Zechstein Main Dolomite carbonates in Western Poland: A new approach: Journal of Petroleum Geology, v. 32, p. 215–233.

    Google Scholar 

  • Smith, M. E., A. R. Carroll, J. J. Scott, and B. S. Singer, 2014, Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming: Earth and Planetary Science Letters, v. 403, p. 393–406.

    Google Scholar 

  • Smith, M. E., A. R. Carroll, and B. S. Singer, 2008, Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States: Geological Society of America Bulletin, v. 120, p. 54–84.

    Google Scholar 

  • Smith, M. E., B. Singer, and A. Carroll, 2003, Ar-40/Ar-39 geochronology of the Eocene Green River Formation,Wyoming: Geological Society of America Bulletin, v. 115, p. 549–565.

    Google Scholar 

  • Smoot, J. P., 1983, Depositional subenvironments in an arid closed basin; the Wilkins Peak Member of the Green River Formation (Eocene), Wyoming, USA: Sedimentology, v. 30, p. 801–827.

    Google Scholar 

  • Smoot, J. P., 1991, Sedimentary facies and depositional environments of early Mesozoic Newark Group, Eastern North America: Paleogeography, Paleogeology and Paleoclimatology, v. 84, p. 369–423.

    Google Scholar 

  • Sonnenfeld, P., and I. S. Al-Aasm, 1991, The Salina Group evaporites in the Michigan Basin, in P. A. Catacosinos, and P. A. Daniels, Jr., eds., Early sedimentary evolution of the Michigan Basin: Boulder, CO, Geological Society of America, Special Paper v. 256, p. 139–153.

    Google Scholar 

  • Southgate, P. N., 1991, A sedimentological model for the Loves Creek Member of the Late Proterozoic Bitter Springs Formation, Australia: Bureau Mineral Resources (BMR), Geology and Geophysics, Bulletin, v. 236, p. 113–126.

    Google Scholar 

  • Southgate, P. N., I. B. Lambert, T. H. Donnelly, R. Henry, H. Etminan, and G. Weste, 1989, Depositional environments and diagenesis in Lake Parakeelya: a Cambrian alkaline playa from the Officer Basin, South Australia: Sedimentology, v. 36, p. 1091–1112.

    Google Scholar 

  • Spencer, R. J., H. P. Eugster, B. F. Jones, and S. L. Rettig, 1985a, Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850: Geochimica et Cosmochimica Acta, v. 49, p. 727–737.

    Google Scholar 

  • Spencer, R. J., H. P. Eugster, and B. F. Jones, 1985b, Geochemistry of Great Salt Lake, Utah II: Pleistocene-Holocene evolution: Geochimica et Cosmochimica Acta, v. 49, p. 739–747.

    Google Scholar 

  • Spötl, C., and S. Burns, 1994, Magnesite diagenesis in redbeds – A case study from the Permian of the Northern Calcareous Alps (Tyrol, Austria): Sedimentology, v. 41, p. 543–565.

    Google Scholar 

  • St. John, J. W., and D. E. Eby, 1978, Peritidal carbonates and evidence for vanished evaporites in the Lower Ordovician Cool Creek Formation; Arbuckle Mountains, Oklahoma: Gulf Coast Association of Geological Societies Transactions, v. 28, p. 589–599.

    Google Scholar 

  • Steinhauff, D. M., A. E. Gregory, and C. J. Heine, 2008, Eocene Rus anhydrite; limitations on exploration, production, and seismic interpretation (abs.): GeoArabia (Manama), v. 13, p. 237.

    Google Scholar 

  • Steinhoff, I., and C. Strohmenger, 1999, Facies differentiation and sequence stratigraphy in ancient evaporite basins – An example from the basal Zechstein (Upper Permian of Germany): Carbonates & Evaporites, v. 14, p. 146–181.

    Google Scholar 

  • Stephenson, R. A., J. T. van Berkel, and S. A. P. L. Cloetingh, 1992, Relation between salt diapirism and the tectonic history of the Sverdrup Basin, Arctic Canada: Canadian Journal of Earth Sciences, v. 29, p. 2695–2705.

    Google Scholar 

  • Stollhofen, H., S. Gerschutz, I. G. Stanistreet, and V. Lorenz, 1998, Tectonic and volcanic controls on Early Jurassic rift-valley lake deposition during emplacement of Karoo flood basalts, southern Namibia: Palaeogeography Palaeoclimatology Palaeoecology, v. 140, p. 185 ff.

    Google Scholar 

  • Strohmenger, C., M. Antonini, G. Jager, K. Rockenbauch, and C. Strauss, 1996b, Zechstein 2 Carbonate reservoir facies distribution in relation to Zechstein sequence stratigraphy (upper Permain, northwest Germany) – an integrated approach: Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, v. 20, p. 1–35.

    Google Scholar 

  • Strohmenger, C., E. Voigt, and J. Zimdars, 1996a, Sequence stratigraphy and cyclic development of Basal Zechstein carbonate-evaporite deposits with emphasis on Zechstein 2 off-platform carbonates (Upper Permian, Northeast Germany): Sedimentary Geology, v. 102, p. 33–54.

    Google Scholar 

  • Strohmenger, C. J., R. H. S. Alway, R. W. Broomhall, R. F. Hulstrand, A. Al-Mansoori, A. A. Abdalla, and A. Al-Aidarous, 2002, Sequence stratigraphy of the Khuff Formation comparing subsurface and outcrop data (Arabian plate, U.A.E.): Society of Petroleum Engineers, SPE Paper 78535.

    Google Scholar 

  • Sun, S. Q., 1995, Dolomite reservoirs; porosity evolution and reservoir characteristics: American Association of Petroleum Geologists Bulletin, v. 79, p. 186–204.

    Google Scholar 

  • Sun, S. Q., and M. Esteban, 1994, Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality – Lessons from Miocene carbonates: Bulletin American Association of Petroleum Geologists, v. 78, p. 519–543.

    Google Scholar 

  • Surdam, R. C., and C. A. Wolfbauer, 1975, Green River Formation, Wyoming: a playa lake complex: Geological Society of America Bulletin, v. 86, p. 335–345.

    Google Scholar 

  • Sweet, A. C., G. S. Soreghan, D. E. Sweet, M. J. Soreghan, and A. S. Madden, 2013, Permian dust in Oklahoma: Source and origin for Middle Permian (Flowerpot-Blaine) redbeds in Western Tropical Pangaea: Sedimentary Geology, v. 284‚Äì285, p. 181–196.

    Google Scholar 

  • Szatmari, P., 2000, Habitat of petroleum along the South Atlantic Margins, in M. R. Mello, and B. J. Katz, eds., Petroleum Systems of the South Atlantic Margins, v. 73: Tulsa, American Association of Petroleum Geologists Memoir, p. 69–75.

    Google Scholar 

  • Szatmari, P., R. S. Carvalho, and I. A. Simoes, 1979, A comparison of evaporite facies in the late Paleozoic Amazon and the Middle Cretaceous South Atlantic salt basins: Economic Geology, v. 74, p. 432–447.

    Google Scholar 

  • Talbot, C. J., W. Stanley, R. Soub, and N. Alsadoun, 1996, Epitaxial salt reefs and mushrooms in the southern Dead Sea: Sedimentology, v. 43, p. 1025–1047.

    Google Scholar 

  • Talbot, M. R., K. Holm, and M. A. J. Williams, 1994, Sedimentation in low-gradient desert margin systems; a comparison of the Late Triassic of Northwest Somerset (England) and the late Quaternary of east-central Australia, in M. R. Rosen, ed., Paleoclimate and basin evolution of playa systems, v. 289, Special Paper – Geological Society of America, p. 97–117.

    Google Scholar 

  • Tang, Z. H., J. Parnell, and F. J. Longstaffe, 1997, Diagenesis of analcime-bearing reservoir sandstones – the Upper Permian Pingdiquan Formation, Junggar Basin, Northwest China: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 486–498.

    Google Scholar 

  • Tanner, L. H., 2002, Borate formation in a perennial lacustrine setting: Miocene-Pliocene Furnace Creek Formation, DeathValley, California, USA: Sedimentary Geology, v. 148, p. 259–273.

    Google Scholar 

  • Tanoli, S. K., R. Husain, and A. A. Sajer, 2008, Facies in the Unayzah Formation and the Basal Khuff Clastics in subsurface, northern Kuwait: Geoarabia, v. 13, p. 15–40.

    Google Scholar 

  • Tari, G., J. Molnar, and P. Ashton, 2003, Examples of salt tectonics from West Africa: A comparative approach: Geological Society Special Publication, v. 207, p. 85–104.

    Google Scholar 

  • Taylor, J. C. M., 1990, Upper Permian-Zechstein, in K. W. Glennie, ed., Introduction to the Petroleum Geology of the North Sea (3rd Edition): Oxford, Blackwell, p. 153–190.

    Google Scholar 

  • Tiercelin, J. J., and A. Mondeguer, 1991, The geology of the Tanganyika trough, in G. W. Coulter, ed., Lake Tanganyika and its life: London, Oxford University Press, p. 7–48.

    Google Scholar 

  • Topper, R. P. M., and P. T. Meijer, 2013, A modeling perspective on spatial and temporal variations in Messinian evaporite deposits: Marine Geology, v. 336, p. 44–60.

    Google Scholar 

  • Torsvik, T. H., S. Rousse, C. Labails, and M. A. Smethurst, 2009, A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin: Geophysical Journal International, v. 177, p. 1315–1333.

    Google Scholar 

  • Trappe, J., 2000, Pangea: extravagant sedimentary resource formation during supercontinent configuration, an overview: Palaeogeography Palaeoclimatology Palaeoecology, v. 161, p. 35–48.

    Google Scholar 

  • Trendall, A. F., 1983, The Hamersley Basin, in A. F. Trendall, and R. C. Morris, eds., Iron Formations: Facts and Problems: Amsterdam, Elsevier, p. 69–129.

    Google Scholar 

  • Trindade, L. A. F., J. L. Dias, and M. R. Mello, 1995, Sedimentological and geochemical characterisation of the Lagoa Feia Formation, rift phase of the Campos Basin, Brazil, in B. Katz, ed., Petroluem source rocks: Berlin, Springer Verlag, p. 149–165.

    Google Scholar 

  • Tucker, M. E., 1991, Sequence stratigraphy of carbonate-evaporite basins; models and application to the Upper Permian (Zechstein) of Northeast England and adjoining North Sea: Journal of the Geological Society of London, v. 148, p. 1019–1036.

    Google Scholar 

  • Tucker, M. E., 1993, Carbonate diagenesis and sequence stratigraphy: Sedimentology review, v. 1, p. 51–72.

    Google Scholar 

  • Tucker, M. E., 1999, Sabkha cycles, stacking patterns and controls: Gachsaran (Lower Fars/Fatha) Formation, Miocene, Mesopotamian Basin, Iraq: Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen, v. 214, p. 45–69.

    Google Scholar 

  • Turner, P., D. Pilling, D. Walker, J. Exton, J. Binnie, and N. Sabaou, 2001, Sequence stratigraphy and sedimentology of the late Triassic TAG-I (Blocks 401/402, Berkine Basin, Algeria): Marine & Petroleum Geology, v. 18, p. 959–981.

    Google Scholar 

  • Ulmishek, G. F., 2001a, Petroleum Geology and Resources of the Dnieper-Donets Basin, Ukraine and Russia: U.S. Geological Survey Bulletin, v. 2201-E.

    Google Scholar 

  • Ulmishek, G. F., 2001b, Petroleum Geology and Resources of the North Caspian Basin, Kazakhstan and Russia: U.S. Geological Survey Bulletin 2201-B.

    Google Scholar 

  • Ulmishek, G. F., V. A. Bogino, M. B. Keller, and Z. L. Poznyakevich, 1994, Structure, stratigraphy and petroleum geology of the Dnieper-Donets Basins, Byelarus anf Ukraine, in S. M. Landon, ed., Interior Rift Basins, v. 59: Tulsa, OK, American Association Petroleum Geologists Memoir, p. 125–156.

    Google Scholar 

  • Utha-aroon, C., 1993, Continental origin of the Maha-Sarakham evaporites, northeastern Thailand: Journal of Southeast Asian Earth Sciences, v. 8, p. 193–203.

    Google Scholar 

  • Van Wagoner, J. C., R. M. Mitchum, K. M. Campion, and V. D. Rahmanian, 1990, Siliciclastic Sequence Stratigraphy in Well Logs, Cores and Outcrops, Amer. Assoc. Petrol. Geol. Methods in Exploration Series, No. 7: Tulsa.

    Google Scholar 

  • Van Wagoner, J. C., H. W. Posamentier, R. M. Mitchum Jr., P. R. Vail, J. F. Sarg, T. S. Loutit, and J. Hardenbol, 1988, An overview of the fundamentals of sequence stratigraphy and key definitions, in C. K. Wilgus, B. S. Hastings, C. G. S. C. Kendall, H. W. Posamentier, C. A. Ross, and J. C. Van Wagoner, eds., Sea-Level Changes: An Integrated Approach, v. 42: Tulsa, Soc. Econ. Paleontol. Mineral. Spec. Publ., p. 39–45.

    Google Scholar 

  • Varol, B., H. Araz, L. Karadenizli, N. Kazanci, G. Seyitoglu, and S. Sen, 2002, Sedimentology of the Miocene evaporitic succession in the north of Cankiri-Corum basin, central Anatolia, Turkey: Carbonates and Evaporites, v. 17, p. 197–209.

    Google Scholar 

  • Veevers, J. J., 2004, Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating: Earth Science Reviews, v. 68, p. 1–132.

    Google Scholar 

  • Warren, J. K., 1982b, Hydrologic setting, occurrence, and significance of gypsum in late Quaternary salt lakes, South Australia: Sedimentology, v. 29, p. 609–637.

    Google Scholar 

  • Warren, J. K., 1985, On the significance of evaporite lamination, in B. C. Schreiber, and H. L. Harner, eds., Sixth International Symposium on Salt, v. 6, p. 161–170.

    Google Scholar 

  • Warren, J. K., 1989, Evaporite sedimentology: Importance in hydrocarbon accumulation: Englewood Clifs, Prentice-Hall, 285 p.

    Google Scholar 

  • Warren, J. K., 1991, Sulfate dominated sea-marginal and platform evaporative settings, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.

    Google Scholar 

  • Warren, J. K., 1999, Evaporites: their evolution and economics: Oxford, UK, Blackwell Scientific, 438 p.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Warren, J. K., 2008, Salt as sediment in the Central European Basin system as seen from a deep time perspective (Chapter 5.1), in R. Littke, ed., Dynamics of complex intracontinental basins: The Central European Basin System, Elsevier, p. 249–276.

    Google Scholar 

  • Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.

    Google Scholar 

  • Warren, J. K., and R. H. Kempton, 1997, Evaporite Sedimentology and the Origin of Evaporite-Associated Mississippi Valley-type Sulfides in the Cadjebut Mine Area, Lennard Shelf, Canning Basin, Western Australia., in I. P. Montanez, J. M. Gregg, and K. L. Shelton, eds., Basinwide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations: Tulsa OK, SEPM Special Publication, v. 57, p. 183–205.

    Google Scholar 

  • Warren, J. K., and C. G. S. C. Kendall, 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings; modern and ancient: Bulletin American Association of Petroleum Geologists, v. 69, p. 1013–1023.

    Google Scholar 

  • Wender, L. E., J. W. Bryant, M. F. Dickens, A. S. Neville, and A. M. Al-Moqbel, 1998, Paleozoic (Pre-Khuff) hydrocarbon geology of the Ghawar area, eastern Saudi Arabia: GeoArabia, v. 3, p. 272–302.

    Google Scholar 

  • Westbrook, G. K., and T. J. Reston, 2002, The accretionary complex of the Mediterranean Ridge: tectonics, fluid flow and the formation of brine lakes – an introduction to the special issue of Marine Geology: Marine Geology, v. 186, p. 1–8.

    Google Scholar 

  • Whittle, G. L., and A. S. Alsharhan, 1994, Dolomitization and chertification of the Early Eocene Rus Formation in Abu Dhabi, United Arab Emirates: Sedimentary Geology, v. 92, p. 273–385.

    Google Scholar 

  • Williams, M. A. J., D. I. Dunkerley, P. De Deckker, A. P. Kershaw, and T. Stokes, 1993, Quaternary Environments: London, Edward Arnold, 330 p.

    Google Scholar 

  • Williams, W. D., P. De Deckker, and R. J. Shiel, 1998, The limnology of Lake Torrens, an episodic salt lake of central Australia, with particular reference to unique events in 1989: Hydrobiologia, v. 384, p. 101–110.

    Google Scholar 

  • Williamson, C. R., 1978, Depositional processes, diagenesis and reservoir properties of Permian Deep sea sandstones, Bell Canyon Formation, Texas – New Mexico: Doctoral thesis, University of Texas at Austin.

    Google Scholar 

  • Wilson, J. T., 1966, Did the Atlantic close and then re-open?: Nature, v. 211, p. 676–681.

    Google Scholar 

  • Yagmurlu, F., and C. Helvaci, 1994, Sedimentological characteristics and facies of the evaporite-bearing Kirmir Formation (Neogene), Beypazari Basin, central Anatolia, Turkey: Sedimentology, v. 41, p. 847–860.

    Google Scholar 

  • Yahi, N., R. G. Schaefer, and R. Littke, 2001, Petroleum generation and accumulation in the Berkine basin, eastern Algeria: Bulletin American Association Petroleum Geologists, v. 85, p. 1439–1467.

    Google Scholar 

  • Yan, S., G. Mu, Y. Xu, and Z. Zhao, 1998, Quaternary environmental evolution of the Lop Nur region, China: Acta Geographica Sinica, v. 53, p. 332–340.

    Google Scholar 

  • Yang, W. B., R. J. Spencer, H. R. Krouse, T. K. Lowenstein, and E. Cases, 1995, Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, Western China – Hydrology and paleoclimatology in arid environments: Palaeogeography Palaeoclimatology Palaeoecology., v. 117, p. 279–290.

    Google Scholar 

  • Youssef, E. S. A. A., 1998, Sequence stratigraphy of the Upper Jurassic evaporite-carbonate-sequence at the western area of Wadi Al-Jawf-Marib Basin, Yemen: Carbonates & Evaporites, v. 13, p. 168–173.

    Google Scholar 

  • Zachos, J. C., M. Pagani, L. Sloan, E. Thomas, and K. Billups, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, p. 686–693.

    Google Scholar 

  • Zambito, J. J., and K. C. Benison, 2013, Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite: Geology, v. 41, p. 587–590.

    Google Scholar 

  • Zharkov, M. A., 1981, History of Paleozoic Salt Accumulation: Berlin, Springer Verlag, 308 pp p.

    Google Scholar 

  • Ziegler, A. M., 2001, Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences: GeoArabia, v. 6, p. 445–504.

    Google Scholar 

  • Ziegler, A. M., G. Eshel, P. M. Rees, T. A. Rothfus, D. B. Rowley, and D. Sunderlin, 2003, Tracing the tropics across land and sea: Permian to present: Lethaia, v. 36, p. 227–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Ancient Basins and Stratigraphic Evolution. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_5

Download citation

Publish with us

Policies and ethics