Skip to main content
Book cover

Evaporites pp 1469–1589Cite as

Lower Temperature Metals in an Evaporitic Framework

  • Chapter
  • 4949 Accesses

Abstract

Most subsurface evaporites ultimately dissolve and, through their ongoing dissolution and alteration, can create conditions suitable for metal enrichment and entrapment in subsurface settings ranging from the burial diagenetic through to the metamorphic and igneous realms. Within this framework, this chapter explores relationships between evaporites and lower temperature ore deposits, where ore is defined as a mineral, or an aggregate of minerals, from which a valuable constituent, especially a metal, can be profitably mined or extracted. The next chapter explores the significance of dissolving and altering evaporites in ore deposits formed in the higher temperature igneous and metamorphic realms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Compact sphalerite and wurtzite masses of a pale brown colour, occurring in concentric layers with reniform surfaces, which also may contain pyrite and galena.

  2. 2.

    Pinolitic describes crystal splay textures made up of elongate lenticular crystals of ferroan to magnesian carbonate (siderite, ankerite, brun-nerite, magnesite) with outlines in two dimensions that resemble the patterning along the outside of a closed or partially closed pine-cone (Pinus pinea).

  3. 3.

    The coxco features were correctly interpreted as marine aragonite splay pseudomorphs Brown et al. (1978), then misidentified as pseudomorphs after radiating gypsum splay in subsequent studies; e.g. Walker et al. 1977; Jackson et al. 1987)

References

  • Abidi, R., N. Slim-Shimi, C. Marignac, N. Hatira, D. Gasquet, C. Renac, A. Soumarin, and S. Gleeson, 2012, The origin of sulfate mineralization and the nature of the BaSO4 -SrSO4 solid-solution series in the Ain Allega and El Aguiba ore deposits, Northern Tunisia: Ore Geology Reviews, v. 48, p. 165–179.

    Google Scholar 

  • Aharon, P., 1988, A stable isotope study of magnesites from the Rum Jungle Uranium field. Australia: Implications for the origin of massive stratabound massive magnesites: Chemical Geology, v. 69, p. 127–145.

    Google Scholar 

  • Aitken, J. D., 1981, Stratigraphy and sedimentology of the upper Proterozoic Little Dal Group, Mackenzie Mountains, Northwest Territories: Campbell, F. H. A. Proterozoic basins of Canada. Paper Geological Survey of Canada, v. 10, p. 47–71.

    Google Scholar 

  • Alemán, A. M., and R. Marksteiner, 1995, Structural Styles in the Santiago Fold and Thrust Belt: A Salt Related Orogenic Belt, Secon ISAG, Oxford, UK, 21–23 September 1993, p. 147–153.

    Google Scholar 

  • Alemán, A. M., and R. Marksteiner, 1997, Petroleum Systems and Structural Styles in the Santiago Fold and Thrust Belt: A Salt Related Orogenic Belt, Asociación Colombiana de Geólogos y Geofisicos del Petróleo (ACGGP) VI° Simposio Bolivariano, Bogotá, 1997, Petroleum Exploration in the Subandean Basins, pt. 2, p. 171–186.

    Google Scholar 

  • Anderson, G. M., 1975, Precipitation of Mississippi Valley-type ores: Economic Geology, v. 70, p. 937–942.

    Google Scholar 

  • Anderson, G. M., 1983, Some geochemical aspects of sulphide precipitation in carbonate rock, in G. Kisvarsanyi, S. K. Grant, W. P. Pratt, and J. W. Koenig, eds., International Conference on Mississippi Valley Type Lead–Zinc Deposits, Proceedings Volume, University of Missouri, Rolla, p. 61–76.

    Google Scholar 

  • Anderson, G. M., and R. W. Macqueen, 1988, Ore deposit models — 6. Mississippi Valley-type lead–zinc deposits: Geoscience Canada Reprint Series, v. 3, p. 79–90.

    Google Scholar 

  • Anderson, G. M., and R. W. MacQueen, 1990, Mississippi valley-type lead-zinc deposits, in R. G. Roberts, and P. A. Sheahan, eds., Ore Deposit Models, v. 3: St. John’s, Geoscience Canada Reprint Series, p. 79–90.

    Google Scholar 

  • Aquilina, L., P. Boulvais, and J.-R. Mossmann, 2011, Fluid migration at the basement/sediment interface along the margin of the Southeast basin (France): implications for Pb-Zn ore formation: Mineralium Deposita, v. 46, p. 959–979.

    Google Scholar 

  • Armstrong, J. P., F. J. Longstaffe, and F. J. Hein, 1993, Carbon and oxygen isotope geochemistry of calcite from the Jubilee Zn-Pb deposit, Breton Island: Canadian Mineralogist, v. 31, p. 755–766.

    Google Scholar 

  • Arne, D. C., L. W. Curtis, and S. A. Kissin, 1991, Internal zonation in a carbonate-hosted Zn-Pb-Ag deposit. Nanisivik, Baffin Island, Canada: Economic Geology, v. 86, p. 699–717.

    Google Scholar 

  • Asael, D., A. Matthews, S. Oszczepalski, M. Bar-Matthews, and L. Halicz, 2009, Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits: Chemical Geology, v. 262, p. 147–158.

    Google Scholar 

  • Askew, R. L., 2013, Distribution of the Permian Blaine Formation Salt in the Subsurface of the Hugoton Embayment Area of Baca County, Southeast Colorado: The Mountain Geologist, v. 50, p. 65–75.

    Google Scholar 

  • Augustin, N., C. W. Devey, F. M. van der Zwan, P. Feldens, M. Tominaga, R. A. Bantan, and T. Kwasnitschka, 2014, The rifting to spreading transition in the Red Sea: Earth and Planetary Science Letters, v. 395, p. 217–230.

    Google Scholar 

  • Backer, H., and K. Lange, 1987, Recent hydrothermal metal accumulation, products and conditions of formation, in P. G. Telecki, M. R. Dobson, J. R. Moore, and U. von Stackelberg, eds., Marine Minerals: Dordrecht, Reidel, p. 317–337.

    Google Scholar 

  • Badoux, V., R. Moritz, and L. Fontboté, 2001, The Mississippi Valley-type Zn-Pb deposit of San Vicente, central Peru: An Andean syntectonic deposit.: In Mineral Deposits at the Beginning of the 21st Century, Proceedings of the 6th Biennial SGA Meeting, Krakow, Poland, p. 26–29.

    Google Scholar 

  • Barrett, T. J., and G. M. Anderson, 1988, The solubility of sphalerite and galena in 1–5 m NaCl solutions to 300°C: Geochimica et Cosmochimica Acta, v. 52, p. 813–820.

    Google Scholar 

  • Beales, F. W., and S. A. Jackson, 1966, Precipitation of lead–zinc ores in carbonate reservoirs as illustrated by Pine Point ore field, Canada: Trans. – Inst. Min. Metall., Sect. B, v. 75, p. 278–285.

    Google Scholar 

  • Bechtel, A., A. Gratzer, W. Püttmann, and S. Oszczepalski, 2002, Geochemical characteristics across the oxic/anoxic interface ( Rote Fäule front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland): Chemical Geology, v. 185, p. 9–31.

    Google Scholar 

  • Bechtel, A., and S. Hoernes, 1993, Stable isotopic variations of clay minerals: a key to the understanding of Kupferschiefer-type mineralization, Germany: Geochimica et Cosmochimica Acta, v. 57, p. 1799–1816.

    Google Scholar 

  • Bechtel, A., M. Pervaz, and W. Puttmann, 1998, Role of organic matter and sulphate-reducing bacteria for metal sulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia): Chemical Geology, v. 144, p. 1–21.

    Google Scholar 

  • Bechtel, A., W. Puttmann, and S. Hoernes, 1995, Reconstruction of the thermal history of the Kupferschiefer within the Zechstein Basin of Central Europe: a stable isotope and organic geochemical approach: Ore Geology Reviews, v. 9, p. 371–389.

    Google Scholar 

  • Bechtel, A., Y. N. Shieh, M. Pervaz, and W. Puttmann, 1996, Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt dome environment – inferences from sulfur isotope and organic geochemical investigations of the Bahloul Formation at the Bou Grine Zn/Pb ore deposit, Tunisia: Geochimica et Cosmochimica Acta, v. 60, p. 2833–2855.

    Google Scholar 

  • Bejaoui, J., S. Bouhlel, E. Cardellach, Á. Canals, J. Perona, and Á. Piqué, 2013, Mineralization and fluid inclusion studies of the Aptian carbonate-hosted PbZnBa ore deposits at Jebel Hamra, Central Tunisia: Journal of Geochemical Exploration, v. 128, p. 136–146.

    Google Scholar 

  • Betts, P. G., D. Giles, and G. S. Lister, 2004, Aeromagnetic patterns of half-graben and basin inversion: implications for sediment-hosted massive sulfide Pb–Zn–Ag exploration: Journal of Structural Geology, v. 26, p. 1137–1156.

    Google Scholar 

  • Betts, P. G., and G. S. Lister, 2002, Geodynamically indicated targeting strategy for shale-hosted massive sulfide Pb–Zn–Ag mineralisation in the Western Fold Belt, Mt Isa terrane: Australian Journal of Earth Sciences, v. 49, p. 985–1010.

    Google Scholar 

  • Blanc, G., and P. Anschutz, 1995, New stratification in the hydrothermal brine system of the Atlantis II Deep, Red Sea: Geology, v. 23, p. 543–546.

    Google Scholar 

  • Blum, N., and H. Puchelt, 1991, Sedimentary-hosted polymetallic massive sulphide deposits of the Kebrit and Shaban Deeps, Red Sea.: Mineralium Deposita, v. 26, p. 217–227.

    Google Scholar 

  • Boiron, M.-C., M. Cathelineau, and A. Richard, 2010, Fluid flows and metal deposition near basement /cover unconformity: lessons and analogies from Pb-Zn-F-Ba systems for the understanding of Proterozoic U deposits: Geofluids, v. 10, p. 270–292.

    Google Scholar 

  • Bone, Y., 1983, Interpretation of magnesites at Rum Jungle, N. T. using fluid inclusions: Journal of the Geological Society of Australia, v. 30, p. 375–381.

    Google Scholar 

  • Botz, R., M. Schmidt, H. Wehner, H. Hufnagel, and P. Stoffers, 2007, Organic-rich sediments in brine-filled Shaban- and Kebrit deeps, northern Red Sea: Chemical Geology, v. 244, p. 520–553.

    Google Scholar 

  • Boyle, R. W., R. K. Wanless, and R. D. Stevens, 1976, Sulfur isotope investigation of the barite, manganese, and lead-zinc-copper-silver deposits of the Walton-Cheverie area, Nova Scotia, Canada: Economic Geology, v. 71, p. 749–762.

    Google Scholar 

  • Broadbent, G. C., R. E. Myers, and J. V. Wright, 1998, Geology and origin of shale-hosted Zn-Pb-Ag mineralization at the Century Deposit, Northwest Queensland, Australia: Economic Geology, v. 93, p. 1264–1294.

    Google Scholar 

  • Brown, A. C., 1997, World-class sediment-hosted stratiform copper deposits – Characteristics, genetic concepts and metallotects: Australian Journal of Earth Sciences, v. 44, p. 317–328.

    Google Scholar 

  • Brown, A. C., 2005, Iron transport in redbeds during the genesis of sediment-hosted stratiform copper deposits, p. 83–86.

    Google Scholar 

  • Brown, A. C., 2006, Close linkage of copper (and uranium) transport to diagenetic reddening of “upstream” basin sediments for sediment-hosted stratiform copper (and roll-type uranium) mineralization: Journal of Geochemical Exploration, v. 89, p. 23–26.

    Google Scholar 

  • Bull, S. W., 1998, Sedimentology of the Palaeoproterozoic Barney Creek formation in DDH BMR McArthur 2, southern McArthur basin, northern territory: Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, v. 45, p. 21–31.

    Google Scholar 

  • Cailteux, J., 1986, Diagenetic sulphide mineralization within the stratiform copper- cobalt deposit of West Kambove (Shaba-Zaire). Sequence of mineralization in sediment-hosted copper deposits (Part 2), in G. H. Friedr, ed., Geology and Metallogeny of Copper Deposits, v. 4, Springer-Verlag; Special Publ. of the Society for Geology Applied to Mineral Deposits, p. 398–411.

    Google Scholar 

  • Cailteux, J., 1994, Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization: Journal of African Earth Sciences, v. 19, p. 279–301.

    Google Scholar 

  • Carlisle, D., P. M. Merifield, A. R. Orme, M. S. Kohl, O. Kolker, and O. R. Lunt, 1978, Distribution of calcretes and gypcretes in southwestern United States and their uranium favorability, based on a study of deposits in Western Australia and South West Africa (Namibia): US DOE Report GJBX-29(78), 274 p.

    Google Scholar 

  • Carpenter, A. B., 1978, Origin and chemical evolution of brines in sedimentary basins: Oklahoma Geological Survey Circular, v. 79, p. 60–77.

    Google Scholar 

  • Carpenter, A. B., M. L. Trout, and E. E. Pickett, 1974, Preliminary report on the origin and chemical evolution of oil field brines in central Mississippi: Economic Geology, v. 69, p. 1191–1206.

    Google Scholar 

  • Chabu, M., 1995, The geochemistry of phlogopite and chlorite from the Kipushi Zn-Pb-Cu deposit, Zaire: Canadian Mineralogist, v. 33, p. 547–558.

    Google Scholar 

  • Chapman, L. H., 2004, Geology and Mineralization Styles of the George Fisher Zn-Pb-Ag Deposit, Mount Isa, Australia: Economic Geology, v. 99, p. 233–255.

    Google Scholar 

  • Chartrand, F. M., A. C. Brown, and R. V. Kirkham, 1989, Diagenesis, sulphides, and metal zoning in the Redstone copper deposit, Northwest Territories: Geological Association of Canada Special Paper, v. 36, p. 189–206.

    Google Scholar 

  • Chi, G. X., and M. M. Savard, 1995, Fluid evolution and mixing in the Gays River Carbonate-hosted Zn-Pb deposit and its surrounding barren areas, Nova Scotia: Atlantic Geology, v. 31, p. 141–152.

    Google Scholar 

  • Clarke, J. D. A., 2006, Antiquity of aridity in the Chilean Atacama Desert: Geomorphology, v. 73, p. 101–114.

    Google Scholar 

  • Clayton, R. H., and L. Thorpe, 1982, Geology of the Nanisivik zinc- lead deposit: Geological Association of Canada, Special Paper, v. 25, p. 739–758.

    Google Scholar 

  • Cocherie, A., J. Y. Calvez, and E. Oudin-Dunlop, 1994, Hydrothermal activity as recorded by Red Sea sediments; Sr-Nd isotopes and REE signatures: Marine Geology, v. 118, p. 291–302.

    Google Scholar 

  • Collins, A. G., 1975, Geochemistry of oil field waters: Developments in Petroleum Science, 1: Amsterdam, Elsevier, 496 p.

    Google Scholar 

  • Conor, C. H. H., and W. V. Preiss, 2008, Understanding the 1720–1640 Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, Southeastern Australia: Implications for tectonics, basin evolution and ore genesis: Precambrian Research, v. 166, p. 297–317.

    Google Scholar 

  • Coron, C. R., 1982, Facies relations and ore genesis of the Newfoundland Zinc mines deposit, Daniel’s Harbour, western Newfoundland: Doctoral thesis, University of Toronto (Canada).

    Google Scholar 

  • Cooke, D. R., S. W. Bull, R. R. Large, and P. J. McGoldrick, 2000, The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (sedex) deposits: Economic Geology, v. 95, p. 1–17.

    Google Scholar 

  • Coveney, R. M., 1989, A review of the origins of metal-rich Pennsylvanian black shales, central USA, with an inferred role for basinal brines: Applied Geochemistry, v. 4, p. 347–367.

    Google Scholar 

  • Cox, D. P., and D. A. Singer, 2007, Descriptive and Grade-tonnage models for Iron-oxide Cu-Au deposits: USGS Open File Report 2006–1155, 13 p.

    Google Scholar 

  • D’Amore, F., D. Giusti, and A. Abdallah, 1998, Geothermics of the high-salinity geothermal field of Asal, Republic of Djibouti, Africa: Geothermics, v. 27, p. 197–210.

    Google Scholar 

  • Dahlkamp, F. J., 1993, Uranium Ore Deposits, Springer- Verlag, Berlin & Heidelberg, 460 p.

    Google Scholar 

  • Davidson, G. J., 1999, Feldspar metasomatism along a Proterozoic rift-basin margin – “Smoke” around a base-metal “fire” (HYC deposit, Australia) or a product of background diagenesis?: Geological Society of America Bulletin, v. 111, p. 663–673.

    Google Scholar 

  • Davies, G. R., 1974, Paleozoic evaporites of the Canadian Arctic Archipelago, in A. H. Coogan, ed., Fourth International Symposium on Salt, Northern Ohio Geological Society, p. 119–125.

    Google Scholar 

  • De Magnee, I., and A. Francois, 1988, The origin of the Kipushi (Cu,Zn,Pb) Deposit in direct relation with a Proterozoic salt diapir; Copperbelt of Central Africa, Shaba, Republic of Zaire, in G. H. Friedrich, and P. M. Herzig, eds., Base metal sulfide deposits in sedimentary and volcanic environments: Berlin, Springer Verlag, p. 74–93.

    Google Scholar 

  • Degens, E. T., and D. A. Ross, 1969, Hot Brines and recent heavy metal deposits in the Red Sea: New York, N.Y., Springer Verlag, 600 p.

    Google Scholar 

  • Dewing, K., and P. Copper, 1991, Upper Ordovician stratigraphy of Southampton Island, Northwest Territories: Canadian Journal of Earth Sciences, v. 28, p. 283–291.

    Google Scholar 

  • Dewing, K., R. J. Sharp, and E. Turner, 2005, Regional Metallogeny Synopsis Of The Polaris Zn-Pb-Cu District, Canadian Arctic Islands, Nunavut: Electronic publication (pdf) available from http://gsc.nrcan.gc.ca/mindep/metallogeny/mvt/polaris/ index_e.php.

  • Diehl, S. F., A. H. Hofstra, A. E. Koenig, P. Emsbo, W. Christiansen, and C. Johnson, 2010, Hydrothermal Zebra Dolomite in the Great Basin, Nevada – Attributes and Relation to Paleozoic Stratigraphy, Tectonics, and Ore Deposits: Geosphere, v. 6, p. 663–690.

    Google Scholar 

  • Dill, H. G., N. Nolte, and B. T. Hansen, 2014, Lithology, mineralogy and geochemical characterizations of sediment-hosted Sr–F deposits in the eastern Neo-Tethyan region – With special reference to evaporation and halokinesis in Tunisia: Journal of African Earth Sciences, v. 92, p. 76–96.

    Google Scholar 

  • Dupre, B., G. Blanc, J. Boulegue, and C. J. Allegre, 1988, Metal remobilization at a spreading centre studied using lead isotopes: Nature, v. 333, p. 165–167.

    Google Scholar 

  • Ehrhardt, A., C. Hübscher, and D. Gajewski, 2005, Conrad Deep, Northern Red Sea: Development of an early stage ocean deep within the axial depression: Tectonophysics, v. 411, p. 19–40.

    Google Scholar 

  • Eldridge, C. S., N. Williams, W. Compston, and J. L. Walshe, 1991, The HYC deposit at McArthur River Northern Territory, Australia: a non-exhalative model: SGEG Ore Fluids Conf., p. 15–16.

    Google Scholar 

  • Eldridge, C. S., N. Williams, and J. L. Walshe, 1993, Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: II. A study of the H.Y.C. deposit at McArthur River, Northern Territory, Australia: Economic Geology, v. 88, p. 1–26.

    Google Scholar 

  • Ellis, A. J., 1968, Natural hydrothermal systems and experimental hot-water/rock interaction; reactions with NaCl solutions and trace metal extraction: Geochimica et Cosmochimica Acta, v. 32, p. 1356–1363.

    Google Scholar 

  • Emsbo, P., 2009, Geologic Criteria for the Assessment of Sedimentary Exhalative (Sedex) Zn-Pb-Ag Deposits: USGS Report OF09-1209.

    Google Scholar 

  • Entwistle, L. P., and L. O. Gouin, 1955, The chalcocite-ore deposits at Corocoro, Bolivia: Economic Geology, v. 50, p. 555–570.

    Google Scholar 

  • Eugster, H. P., 1985, Oil shales, evaporites and ore deposits: Geochimica et Cosmochimica Acta, v. 49, p. 619–635.

    Google Scholar 

  • Eugster, H. P., 1989, Geochemical environments of sediment-hosted Cu-Pb-Zn deposits, in R. W. Boyle, A. C. Brown, C. W. Jefferson, and E. C. Jowett, eds., Sediment hosted stratiform copper deposits, v. 36, Geological Association of Canada, Special Paper, p. 111–126.

    Google Scholar 

  • Evans, A. M., 1993, Ore Geology and Industrial Minerals: An Introduction, 3rd Edition, Wiley-Blackwell, 400 p.

    Google Scholar 

  • Fallara, F., M. M. Savard, and S. Paradis, 1998, A structural, petrographic, and geochemical study of the Jubilee Zn-Pb deposit, Nova Scotia, Canada and a new metallogenic model: Economic Geology, v. 93, p. 757–778.

    Google Scholar 

  • Feldens, P., M. Schmidt, N. Mitchell, and A. S. Basaham, 2012, Subsea salt flows in the Atlantis II Deep and Thetis Deep, Red Sea: Proceedings – EGU General Assembly 2012, 22–27 April, 2012 in Vienna, Austria., p.11261.

    Google Scholar 

  • Ferguson, J., H. Etminan, and F. Ghassemi, 1993, Geochemistry of deep formation waters in the Canning Basin, Western Australia, and their relationship to Zn-Pb mineralization: Australian Journal of Earth Sciences, v. 40, p. 471–483.

    Google Scholar 

  • Ferguson, J., G. Jacobsen, W. R. Evans, R. A. Wooding, C. J. Barnes, and S. W. Tyler, 1992, Advection and diffusion of groundwater brines in modern and ancient salt lakes, Nulla groundwater discharge complex, Murray Basin, southeast Australia, in J. Kharaka, and A. S. Maest, eds., Rock-Water Interactions Proceedings: Balkema, Rotterdam.

    Google Scholar 

  • Flint, S., 1986, Sedimentary and diagenetic controls on red-bed ore genesis; the middle Tertiary San Bartolo copper deposit, Antofagasta Province, Chile: Economic Geology, v. 81, p. 761–778.

    Google Scholar 

  • Flint, S. S., 1989, Sediment-hosted stratabound copper deposits of the Central Andes: Geological Association of Canada Special Paper, v. 36, p. 371–398.

    Google Scholar 

  • Fontboté, L., and H. Gorzawski, 1990, Genesis of the Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Peru: Geologic and isotopic (Sr, O, C, S, Pb) evidence: Economic Geology, v. 85, p. 1402–1437.

    Google Scholar 

  • Forrestal, P. J., 1990, Mount Isa and Hilton silver-lead-zinc deposits, in F. E. Hughes, ed., The Mineral Deposits of Australia and Papua New Guinea: Volume 1, v. 14, Australasian Institute of Mining & Metallurgy: Monograph, p. 927–934.

    Google Scholar 

  • Fusswinkel, T., T. Wagner, M. Wälle, T. Wenzel, C. A. Heinrich, and G. Markl, 2013, Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions: Geology, v. 41, p. 679–682.

    Google Scholar 

  • Gablina, I. F., 1981, New data on the formation conditions of the Dzhezkazgan copper deposit: International Geology Review, v. 23, p. 1313–1311.

    Google Scholar 

  • Ghazban, F., 1988, Geological and stable isotope studies of carbonate-hosted lead zinc deposits in Nanisivik, northern Baffin Island, NWT, Canada.: Open Access Dissertations and Theses. Paper 3989. http://digitalcommons.mcmaster.ca/ opendissertations/3989.

  • Ghazban, F., H. P. Schwarcz, and D. C. Ford, 1990, Carbon and sulfur isotope evidence for in situ reduction of sulfate, Nanisivik lead-zinc deposits, Northwest Territories, Baffin Island, Canada: Economic Geology, v. 85.

    Google Scholar 

  • Ghazban, F., H. P. Schwarcz, and D. C. Ford, 1992, Multistage dolomitization in the Society Cliffs Formation, northern Baffin Island, Northwest Territories, Canada: Canadian Journal of Earth Sciences, v. 29, p. 1459–1473.

    Google Scholar 

  • Gill, D., 1994, Niagaran reefs of Northern Michigan. 1. Exploration portrait: Journal of Petroleum Geology, v. 17, p. 99–110.

    Google Scholar 

  • Giordano, T., H., 2002, Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity: Geochemical Transactions, v. 3, p. 56–56.

    Google Scholar 

  • Giordano, T. H., 1985, A preliminary evaluation of organic ligands and metal-organic complexing in Mississippi Valley-Type ore solutions: Economic Geology, v. 80, p. 96–106.

    Google Scholar 

  • Giordano, T. H., and Y. K. Kharaka, 1994, Organic ligand distribution and speciation in sedimentary basin brines, diagenetic fluids and related ore solutions: Geological Society, London, Special Publications, v. 78, p. 175–202.

    Google Scholar 

  • Gize, A. P., H. L. Barnes, and J. S. Bell, 1991, A critical evaluation of organic processes in Mississippi valley-type genesis: Source, transport and deposition of metals, p. 527–530.

    Google Scholar 

  • Glennie, K. W., 1989a, A summary of tropical desert sedimentary environments, present and past: Geological Association of Canada Special Paper, v. 36, p. 67–84.

    Google Scholar 

  • Glennie, K. W., 1989b, Some effects of the Late Permian Zechstein transgression in northwestern Europe: Geological Association of Canada Special Paper, v. 36, p. 557–565.

    Google Scholar 

  • Goodfellow, W. D., and J. W. Lydon, 2007, Sedimentary exhalative (SEDEX) deposits, in W. D. Goodfellow, ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication, Vol. 5, p. 163–183.

    Google Scholar 

  • Goodfellow, W. D., J. W. Lydon, and R. J. W. Turner, 1993, Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits: Geological Association of Canada Special Paper, v. 40, p. 201–251.

    Google Scholar 

  • Grandia, F., A. Canals, E. Cardellach, D. A. Banks, and J. Perona, 2003, Origin of Ore-Forming Brines in Sediment-Hosted Zn-Pb Deposits of the Basque-Cantabrian Basin, Northern Spain: Economic Geology, v. 98, p. 1397–1411.

    Google Scholar 

  • Grotzinger, J. P., and A. H. Knoll, 1995, Anomolous carbonate precipitates – Is the Precambrian the key to the Permian: Palaios, v. 10, p. 578–596.

    Google Scholar 

  • Groves, D., I. , and F. Bierlein, P. , 2007, Geodynamic settings of mineral deposit systems: Journal of the Geological Society, v. 164, p. 19–30.

    Google Scholar 

  • Groves, D. I., F. P. Bierlein, L. D. Meinert, and M. W. Hitzman, 2010, Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits: Economic Geology, v. 105, p. 641–654.

    Google Scholar 

  • Groves, D. I., K. C. Condie, R. J. Goldfarb, J. M. A. Hronsky, and R. M. Vielreicher, 2005, Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits: Economic Geology, v. 100, p. 203–224.

    Google Scholar 

  • Hallager, W. S., M. R. Ulrich, J. R. Kyle, P. E. Price, and W. A. Gose, 1990, Evidence for episodic basin dewatering in saltdome cap rocks: Geology, v. 18, p. 716–719.

    Google Scholar 

  • Hammer, J., F. Junge, H. J. Rosler, S. Niese, B. Gleisberg, and G. Stiehl, 1990, Element and isotope geochemical investigations of the Kupferschiefer in the vicinity of ‘Rote Faule’, indicating copper mineralization (Sangerhausen Basin, G.D.R.): Chemical Geology, v. 85, p. 345–360.

    Google Scholar 

  • Hannington, M., J. Jamieson, T. Monecke, S. Petersen, and S. Beaulieu, 2011, The abundance of seafloor massive sulfide deposits: Geology, v. 39, p. 1155–1158.

    Google Scholar 

  • Hanor, J. S., 1994a, Origin of saline fluids in sedimentary basins, in J. Parnell, ed., Geofluids; origin, migration and evolution of fluids in sedimentary basins: Geological Society Special Publications, v. 78: London, United Kingdom, Geological Society of London, p. 151–174.

    Google Scholar 

  • Hanor, J. S., 1994b, Physical and chemical controls on the compositions of waters in sedimentary basins: Marine & Petroleum Geology, v. 11, p. 31–45.

    Google Scholar 

  • Hanor, J. S., and J. C. McIntosh, 2007, Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin: Geofluids, v. 7, p. 227–237.

    Google Scholar 

  • Harrison, J. C., 1995, Tectonics and kinematics of a foreland fold belt influenced by salt, Arctic Canada, in M. P. A. Jackson, D. G. Roberts, and S. Snelson, eds., Salt tectonics: a global perspective, American Association of Petroleum Geologists Memoir, v. 65, p. 379–412.

    Google Scholar 

  • Harrison, J. C., and A. W. Bally, 1988, Cross-Sections of the Parry Islands Fold Belt on Melville Island, Canadian Arctic Islands: Implications for the Timing and Kinematic History of Some Thin-Skinned Decollement Systems: Bulletin of Canadian Petroleum Geology, v. 36, p. 311–332.

    Google Scholar 

  • Hartmann, M., J. C. Scholten, P. Stoffers, and K. F. Wehner, 1998, Hydrographic structure of the brine-filled deeps in the Red Sea – New results from the Shaban, Kebrit, Atlantis II, and Discovery deeps: Marine Geology, v. 144, p. 311–330.

    Google Scholar 

  • Hatira, N., and W. Zouari, 1997, Reconnaissance par sondages de la cible d’Oum Edheboua (region de Garn Halfaya, Tunisie Nord-Ouest), resultants et recommandations: Rapport Interne, Office National des Mines, Tunis.

    Google Scholar 

  • Heijlen, W., D. A. Banks, P. Muchez, B. M. Stensgard, and B. W. D. Yardley, 2008, The Nature of Mineralizing Fluids of the Kipushi Zn-Cu Deposit, Katanga, Democratic Repubic of Congo: Quantitative Fluid Inclusion Analysis using Laser Ablation ICP-MS and Bulk Crush-Leach Methods: Economic Geology, v. 103, p. 1459–1482.

    Google Scholar 

  • Hein, F. J., M. C. Graves., and A. Ruffman, 1991, The Jubilee zinc-lead deposit, Nova Scotia: the role of synsedimentary faults, in A. L. Sangster, ed., Mineral deposit studies in Nova Scotia, v. 90-8(2), Geol. Surv. Canada Paper.

    Google Scholar 

  • Helgeson, H. C., 1970, A chemical and thermodynamic model of ore deposition in hydrothermal systems: Mineral. Soc. Am. Spec. Pap., 50th Anniv. Symp., ed. B. A. Morgan.

    Google Scholar 

  • Heppenheimer, H., H. W. Hagemann, and W. Puttmann, 1995, A comparative study of the influence of organic matter on metal accumulation processes in the Kupferschiefer from the Hessian Depression and the north Sudetic Syncline: Ore Geology Reviews, v. 9, p. 391–409.

    Google Scholar 

  • Heroux, Y., A. Chagnon, and M. Savard, 1996, Organic matter and clay anomalies associated with base-metal sulphide deposits: Ore Geology Reviews, v. 11, p. 157–173.

    Google Scholar 

  • Heroux, Y., A. Chagnon, and M. M. Savard, 1994, Anomalies in properties of organic material as associated clay mineral assemblages – Pb-Zn of Gays River, Nova Scotia [French]: Exploration & Mining Geology, v. 3, p. 67–79.

    Google Scholar 

  • Hitzman, M., R. Kirkham, D. Broughton, J. Thorson, and D. Selley, 2005, The sediment-hosted stratiform copper ore system, Economic Geology; One hundredth anniversary volume, 1905–2005, Society of Economic Geologists, Littleton, CO, United States, p. 609–642.

    Google Scholar 

  • Hocking, R. M., I. A. Copp, P. E. Playford, and R. H. Kempton, 1996, The Cadjebut Formation: a Givetian evaporitic precursor to Devonian reef complexes of the Lennard Shelf, Canning Basin, Western Australia: Geological Survey of Western Australia, Annual Review, 1995–96, p. 48–55.

    Google Scholar 

  • Holland, H. D., 1972, Granites, solutions and base metal deposits: Economic Geology, v. 67, p. 281–301.

    Google Scholar 

  • Houston, S., C. Smalley, A. Laycock, and B. W. D. Yardley, 2011, The relative importance of buffering and brine inputs in controlling the abundance of Na and Ca in sedimentary formation waters: Marine and Petroleum Geology, v. 28, p. 1242–1251.

    Google Scholar 

  • Hovland, M., H. G. Rueslatten, H. K. Johnsen, B. Kvamme, and T. Kuznetsova, 2006b, Salt formation associated with sub-surface boiling and supercritical water: Marine and Petroleum Geology, v. 23, p. 855–869.

    Google Scholar 

  • Huichi, R., H. Renmin, and D. P. Cox, 1991, Copper deposition by fluid mixing in deformed strata adjacent to a salt diapir, Dongchuan area, Yunnan Province, China: Economic Geology, v. 86, p. 1539–1545.

    Google Scholar 

  • Huyck, H. L. O., and R. W. Chorey, 1991, Stratigraphic and petrographic comparison of the Creta and Kupferschiefer copper shale deposits: Mineralium Deposita, v. 26, p. 132–142.

    Google Scholar 

  • Ireland, T., S. W. Bull, and R. R. Large, 2004, Mass flow sedimentology within the HYC Zn-Pb-Ag deposit, Northern Territory, Australia: evidence for syn-sedimentary ore genesis: Mineralium Deposita, v. 39, p. 143–158.

    Google Scholar 

  • Jackson, G. D., and L. M. Cumming, 1981, Evaporites and folding in the Neohelikian Society Cliffs Formation, northeastern Bylot Island, Arctic Canada: Current research, Part C. Paper Geological Survey of Canada.

    Google Scholar 

  • Jackson, G. D., T. R. Iannelli, G. M. Narbonne, and P. J. Wallace, 1978, Upper Proterozoic sedimentary and volcanic rocks of the Northern Baffin Island, v. 78–17, Geological Survey Canada paper, 17 p.

    Google Scholar 

  • Jackson, M. J., M. D. Muir, and K. A. Plumb, 1987, Geology of the southern McArthur Basin, Bureau Mineral Resources, Canberra, Australia, Bulletin 220, 173 p.

    Google Scholar 

  • Jackson, M. P. A., and R. B. Cornelius, 1987, Stepwise centrifuge modelling of the effects of differential sediment loading on the formation of salt structures, in I. Lerche, and J. J. O’Brien, eds., Dynamical geology of salt and related structures: Orlando, Florida, Academic Press, p. 163–259.

    Google Scholar 

  • Jackson, M. P. A., O. N. Warin, G. M. Woad, and M. R. Hudec, 2003, Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan Copperbelt, central Africa: Geological Society of America Bulletin, v. 115, p. 314–330.

    Google Scholar 

  • Jefferson, G. W., and J. C. L. Ruelle, 1986, The Late Proterozoic Redstone copper belt, Northwest Territories, in J. A. Morin, ed., Mineral depositis of the Northern Cordillera, v. 27, Canadian Institute Mining and Metallurgy Special Volume, p. 154–168.

    Google Scholar 

  • Jemmali, N., F. Souissi, E. J. M. Carranza, and T. W. Vennemann, 2013, Sulfur and lead isotopes of Guern Halfaya and Bou Grine deposits (Domes zone, northern Tunisia): Implications for sources of metals and timing of mineralization: Ore Geology Reviews, v. 54, p. 17–28.

    Google Scholar 

  • Jemmali, N., F. Souissi, I. M. Villa, and T. W. Vennemann, 2011, Ore genesis of Pb–Zn deposits in the Nappe zone of Northern Tunisia: Constraints from Pb–S–C–O isotopic systems: Ore Geology Reviews, v. 40, p. 41–53.

    Google Scholar 

  • John, D. A., R. A. Ayuso, M. D. Barton, R. J. Blakely, R. J. Bodnar, J. H. Dilles, F. Gray, F. T. Graybeal, J. C. Mars, D. K. McPhee, R. R. Seal, R. D. Taylor, and P. G. Vikre, 2010, Porphyry copper deposit model, Chap. B of Mineral deposit models for resource assessment: : U.S. Geological Survey Scientific Investigations Report 2010–5070–B, 169 p.

    Google Scholar 

  • Jowett, E. C., 1987, Formation of sulphide-calcite veinlets in the Kupferschiefer in Poland by natural hydrofracturing during basin subsidence: Journal of Geology, v. 95, p. 513–526.

    Google Scholar 

  • Jowett, E. C., 1989, Effects of continental rifting on the location and genesis of stratiform copper-silver deposits: Geological Association of Canada Special Paper, v. 36, p. 53–66.

    Google Scholar 

  • Jowett, E. C., 1992, Role of organics and methane in sulfide ore formation, exemplified by Kupferschiefer Cu-Ag deposits, Poland: Chemical Geology, v. 99, p. 51–63.

    Google Scholar 

  • Jowett, E. C., A. Rydzewski, and R. J. Jowett, 1987, The Kupferschiefer Cu-Ag ore deposits in Poland: a re-appraisal of the evidence of their origin and presentation of a new genetic model: Can Journ. Earth Sci., v. 24, p. 2016–2037.

    Google Scholar 

  • Kah, L. C., T. W. Lyons, and J. T. Chesley, 2001, Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution: Precambrian Research, v. 111, p. 203–234.

    Google Scholar 

  • Kampunzu, A. B., J. L. H. Cailteux, A. F. Kamona, M. M. Intiomale, and F. Melcher, 2009, Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt: Ore Geology Reviews, v. 35, p. 263–297.

    Google Scholar 

  • Kawasaki, K., D. T. A. Symons, and T. Dawborn, 2010, Paleomagnetism of the world-class Century Zn-Pb_Ag deposits, Australia: Journal of Geochemical Exploration, v. 106, p. 137–145.

    Google Scholar 

  • Kendrick, M. A., M. Honda, N. H. S. Oliver, and D. Phillips, 2011, The noble gas systematics of late-orogenic H2O- fluids, Mt Isa, Australia: Geochimica et Cosmochimica Acta, v. 75, p. 1428–1450.

    Google Scholar 

  • Kennicutt II, M. C., J. M. Brooks, R. R. Bidigare, R. R. Fay, T. L. Wade, and T. J. McDonald, 1985, Vent-type taxa in a hydrocarbon seep region on the Louisiana slope: Nature, v. 317, p. 351–353.

    Google Scholar 

  • Kerans, C., and P. M. Harris, 2008, Devonian Reefal Platforms of the Canning Basin – Lessons Learned and Value as Analogs: American Association of Petroleum Geologists Search and Discovery Article #40302 (2008) – Adapted from oral presentation at American Association of Petroleum Geologists Annual Convention, Long Beach, CA, April 1–4, 2007.

    Google Scholar 

  • Kerr, J. W., 1968, Stratigraphy of central and eastern Ellesmere Island, Arctic Canada--Pt. 2, Ordovician: Canada Geol. Survey Paper.

    Google Scholar 

  • Kerr, J. W., 1977, Cornwallis lead-zinc district; Mississippi Valley-type deposits controlled by stratigraphy and tectonics: Canadian Journal of Earth Sciences, v. 14, p. 1402–1426.

    Google Scholar 

  • Kharaka, Y. K., W. W. Carothers, L. M. Law, P. J. Lamonthe, and T. L. Fries, 1987, Geochemistry of metal-rich brines from the central Mississippi Salt Dome Basin, USA: Applied Geochemistry, v. 2, p. 543–562.

    Google Scholar 

  • Kharaka, Y. K., and J. S. Hanor, 2003, Deep Fluids in the Continents: I. Sedimentary Basins, Treatise on Geochemistry: Oxford, Pergamon, p. 499–540.

    Google Scholar 

  • Kharaka, Y. K., P. D. Lundegard, and T. H. Giordano, 2000, Distribution and origin of organic ligands in subsurface waters from sedimentary basins: Rev. Econ. Geol., v. 9, p. 119–131.

    Google Scholar 

  • Kirkham, R. V., 1989, Distribution, settings, and genesis of sediment-hosted stratiform copper deposits: Geological Association of Canada Special Paper, v. 36, p. 3–38.

    Google Scholar 

  • Kirkham, R. V., 2001, Sediment hosted stratiform copper (SSC). and other stratbound base metal deposits and the importance of basinal brines and/or evaporites, halotectonics and halokinesis, in P. A., ed., MIneral deposits at the beginnng of the 21st Century (Proceedings of the Joint 6th Biennial SGA-SEG Meeting, Krakow, August 2001), Taylor and Francis, p. 15–18.

    Google Scholar 

  • Kontak, D. J., 1998, A study of fluid inclusions in sulphide and nonsulphide mineral phases from a carbonate-hosted Zn-Pb deposit, Gays River, Nova Scotia, Canada: Economic Geology, v. 93, p. 793–816.

    Google Scholar 

  • Kontak, D. J., E. Farrar, and S. L. McBride, 1994, Ar40-Ar39 dating of fluid migration in a Mississppi-Valley type deposit – The Gays River Zn-Pb deposit, Nova Scotia, Canada: Economic Geology, v. 89, p. 1501–1517.

    Google Scholar 

  • Kontak, D. J., and S. Jackson, 1995, Laser-ablation ICP-MS microanalysis of calcite cement from a Mississippi-Valley type Zn-Pb deposit, Nova Scotia – Dramatic variability in REE content on macro- and micro-scales: Canadian Mineralogist, v. 33, p. 445–467.

    Google Scholar 

  • Koziy, L., S. Bull, R. Large, and D. Selley, 2009, Salt as a fluid driver, and basement as a metal source, for stratiform sediment-hosted copper deposits: Geology, v. 37, p. 1107–1110.

    Google Scholar 

  • Krzywiec, P., 2004, Basement vs. salt tectonics and salt-sediment interaction – Case study of the Mesozoic evolution of the intracontinental Mid-Polish Trough, in P. J. Post, ed., Salt-sediment interactions and hydrocarbon prospectivity: concepts, applications and case studies for the 21st Century. Papers presented at the 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference, Houston Tx, December 5–8, 2004 (CD publication), p. 343–370.

    Google Scholar 

  • Kucha, H., 1990, Geochemistry of the Kupferschiefer, Poland: Geologische Rundschau, v. 79, p. 387–399.

    Google Scholar 

  • Kuznetsov, S. I., 1957, A review of fundamental research on the microflora of petroleum deposits: Mikrobiologiya, v. 26, p. 651–658.

    Google Scholar 

  • Kyle, J. R., and P. E. Price, 1986, Metallic sulphide mineralization in salt-dome cap rocks, Gulf Coast, U.S.A: Institution of Mining and Metallurgy. Transactions, Section B: Applied Earth Sciences, v. 95, p. B6-B16.

    Google Scholar 

  • Kyle, J. R., and P. E. Price, 1986, Sulfide mineralization in salt dome cap rocks of the Houston diapir province: Seni, Steven J., Kyle, J. Richard, Price, Peter E., Samuelson, Fairis. Comparison of cap rocks, mineral resources, and surface features of salt domes in the Houston diapir province. Univ. Tex. at Austin, Bur. Econ. Geol., Austin, Tx, United States. p.

    Google Scholar 

  • Kyle, J. R., 1991, Evaporites, evaporitic processes and mineral resources, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.

    Google Scholar 

  • Kyle, J. R., and H. H. Posey, 1991, Halokinesis, Cap rock Development and salt dome mineral resources, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 413–474.

    Google Scholar 

  • Land, L. S., 1995a, The role of saline formation water in crustal cycling: Aquatic Geochemistry, v. 1, p. 137–145.

    Google Scholar 

  • Land, L. S., 1995b, Na-Ca-Cl saline formation waters, Frio Formation (Oligocene), south Texas, USA: Products of diagenesis: Geochimica et Cosmochimica Acta, v. 59, p. 2163–2174.

    Google Scholar 

  • Land, L. S., and D. R. Prezbindowski, 1981, The origin and evolution of saline formation water, Lower Cretaceous carbonates, South-central Texas, U.S.A.: Journal of Hydrology, v. 54, p. 51–74.

    Google Scholar 

  • Large, D. J., and A. P. Gize, 1996, Pristane/phytane ratios in the mineralized Kupferschiefer of the Fore-Sudetic Monocline, southwest Poland: Ore Geology Reviews, v. 11, p. 89–103.

    Google Scholar 

  • Large, D. J., J. Macquaker, D. J. Vaughan, Z. Sawlowicz, and A. P. Gize, 1995, Evidence for low temperature alteration of sulfides in the Kupferschiefer copper deposits of southwestern Poland: Economic Geology, v. 90, p. 2143–2155.

    Google Scholar 

  • Large, R. R., S. W. Bull, D. R. Cooke, and P. J. McGoldrick, 1998, A genetic model for the HYC deposit, Australia: Based on regional sedimentology, geochemistry, and sulfide-sediment relationships: Economic Geology, v. 93, p. 1345–1368.

    Google Scholar 

  • Large, R. R., S. W. Bull, and P. J. McGoldrick, 2000, Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn-Pb-Ag deposits Part 2. HYC deposit, McArthur River, Northern Territory: Journal of Geochemical Exploration, v. 68, p. 105–126.

    Google Scholar 

  • Large, R. R., S. W. Bull, P. J. McGoldrick, S. Walters, G. M. Derrick, and G. R. Carr, 2005, Stratiform and stratabound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern Australia: Economic Geology, v. 100th Anniversary, p. 931–963.

    Google Scholar 

  • Lavoie, D., D. F. Sangster, M. M. Savard, and F. F., 1995, Multiple breccia events in the lower part of the Carboniferous Windsor Group, Nova Scotia: Atlantic Geology, v. 31, p. 197–207.

    Google Scholar 

  • Lavoie, D., D. F. Sangster, M. M. Savard, and F. Fallara, 1998, Breccias in the lower part of the Mississippian Windsor Group and their relation to Pb-Zn mineralisation: a summary: Economic Geology, v. 93, p. 734–735.

    Google Scholar 

  • Leach, D., J. C. Macquar, V. Lagneau, J. Leventhal, P. Emsbo, and W. Premo, 2006, Precipitation of lead–zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France: Geofluids, v. 6, p. 24–44.

    Google Scholar 

  • Leach, D., D. Sangster, K. Kelley, R. R. Large, G. Garven, C. Allen, J. Gutzmer, and S. Walters, 2005, Sediment-hosted lead-zinc deposits: A global perspective: Economic Geology 100th Aniversary edition, p. 561–607.

    Google Scholar 

  • Leach, D. L., D. C. Bradley, D. Huston, S. A. Pisarevsky, R. D. Taylor, and S. J. Gardoll, 2010, Sediment-Hosted Lead-Zinc Deposits in Earth History: Economic Geology, v. 105, p. 593–625.

    Google Scholar 

  • Leach, D. L., and D. F. Sangster, 1993, Mississippi Valley-type lead-zinc deposits: Geological Association of Canada Special Paper, v. 40, p. 289–314.

    Google Scholar 

  • Lebedev, L. M., 1972, Minerals of contemporary hydrotherms of Cheleken: Cheochemistry International, v. 9, p. 485–504.

    Google Scholar 

  • Light, M. P. R., and H. H. Posey, 1992, Diagenesis and its relation to mineralisation and hydrocarbon reservoir development; Gulf Coast and North Sea Basins, in K. H. Chilingar, and G. V. Wolf, eds., Diagenesis III: Oxford-Amsterdam-New York, Elsevier, p. 511–541.

    Google Scholar 

  • Ljunggren, P., and H. C. Meyer, 1964, The copper mineralization in the Corocoro basin, Bolivia: Economic Geology, v. 59, p. 110–125.

    Google Scholar 

  • Logan, G. A., M. C. Hinman, M. R. Walter, and R. E. Summons, 2001, Biogeochemistry of the 1640 Ma McArthur River (HYC) lead–zinc ore and host sediments, Northern Territory, Australia: Geochimica Cosmochimica Acta, v. 65, p. 2317–2336.

    Google Scholar 

  • Lundegard, P. D., and Y. K. Kharaka, 1994, Distribution and occurrence of organic acids in subsurface waters, in E. D. Pittman, and M. D. Lewan, eds., Organic Acids in Geologic Processes: New York, Springer-Verlag, p. 40–69.

    Google Scholar 

  • Lynch, G., and J. V. A. Keller, 1998, Association between detachment faulting and salt diapirs in the Devonian-Carboniferous Maritimes Basin, Atlantic Canada: Bulletin of Canadian Petroleum Geology, v. 46, p. 189–209.

    Google Scholar 

  • Lynch, G., J. V. A. Keller, and P. S. Giles, 1998, Influence of the Ainslie Detachment on the stratigraphy of the Maritimes Basin and mineralisation in the Windsor Group of Northern Nova Scotia, Canada: Economic Geology, v. 93, p. 703–718.

    Google Scholar 

  • Lyons, T. W., A. M. Gellatly, P. J. McGoldrick, and L. C. Kah, 2006, Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry, in S. E. Kesler, and H. Ohmoto, eds., Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere—Constraints from Ore Deposits, v. 198, Geological Society of America Memoir, p. 169–184.

    Google Scholar 

  • MacGowan, D. B., and R. C. Surdam, 1988, Difunctional carboxylic acid anions in oilfield waters: Organic geochemistry, v. 12, p. 245–259.

    Google Scholar 

  • Machel, H. G., H. R. Krouse, and R. Sassen, 1995, Products and distinguishing criteria of bacterial and thermochemical sulfate reduction: Applied Geochemistry, v. 10, p. 373–389.

    Google Scholar 

  • Mann, A. W., and R. L. Deutscher, 1978, Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia: Economic Geology, v. 73, p. 1724–1737.

    Google Scholar 

  • Masrouhi, A., O. Bellier, and H. Koyi, 2014, Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: polyphase diapirism of the North African inverted passive margin: International Journal of Earth Sciences, v. 103, p. 881–900.

    Google Scholar 

  • McConachie, B. A., and J. N. Dunster, 1996, Sequence stratigraphy of the Bowthorn Block in the Northern Mt Isa Basin, Australia – Implications for the base metal mineralisation process: Geology, v. 24, p. 155–158.

    Google Scholar 

  • McCracken, S. R., H. Etminan, A. G. Connor, and V. A. Williams, 1997, Geology of the Admiral Bay carbonate-hosted zinc-lead deposit, Canning Basin, Western Australia: Special Publication – Society of Economic Geologists, v. 4, p. 330–349.

    Google Scholar 

  • McGoldrick, P. J., and R. R. Keays, 1990, Mount Isa copper and lead-zinc-silver ores; coincidence or cogenesis?: Economic Geology, v. 85, p. 641–650.

    Google Scholar 

  • McKee, D. M., and P. J. Hannon, 1985, The hydrological environment at the Gays River Mine, Gays River, Nova Scotia, Canada: International Journal of Mine Water, v. 4, p. 13–34.

    Google Scholar 

  • McManus, A., and M. W. Wallace, 1992, Age of Mississippi Valley type sulfides determined using cathodoluminesence cement stratigraphy, Lennard Shelf, Canning Basin, Western Australia.: Economic Geology, v. 87, p. 189–193.

    Google Scholar 

  • McNaughton, K., and T. E. Smith, 1986, A fluid inclusion study of sphalerite and dolomite from the Nanisivik lead- zinc deposit, Baffin Island, Northwest Territories, Canada: Economic Geology, v. 81, p. 713–720.

    Google Scholar 

  • Meyer, C., 1988, Proterozoic ore-forming habitats – Tectonic and chemical transitions, in G. Kisvarsanyi, and S. K. Grant, eds., Tectonic controls of ore deposits and vertical and horizontal extent of ore systems: Rolla, University of Missouri, October 6–8, 1987, Conference Proceedings, p. 217–235.

    Google Scholar 

  • Mitchell, N. C., M. Ligi, V. Ferrante, E. Bonatti, and E. Rutter, 2010, Submarine salt flows in the central Red Sea: Geological Society of America Bulletin, v. 122, p. 701–713.

    Google Scholar 

  • Moldovanyi, E. P., and L. M. Walter, 1992, Regional trends in water chemistry, Smackover Formation, southwest Arkansas: geochemical and physical controls: American Association of Petroleum Geologists Bulletin, v. 76, p. 864–894.

    Google Scholar 

  • Monnin, C., and C. Ramboz, 1996, The anhydrite saturation index of the ponded brines and sediment pore waters of the Red Sea deeps: Chemical Geology, v. 127, p. 141–159.

    Google Scholar 

  • Morgan, K. H., 1993, Development, sedimentation and economic potential of palaeoriver systems of the Yilgarn Craton of Western Australia: Sedimentary Geology, v. 85, p. 637–656.

    Google Scholar 

  • Moritz, R., L. Fontbote, J. Spangenberg, S. Rosas, Z. Sharp, and D. Fontignie, 1996, Sr, C and O isotope systematics in the Pucara Basin, central Peru: Comparison between Mississippi Valley-type deposits and barren areas: Mineralium Deposita, v. 31, p. 147–162.

    Google Scholar 

  • Morrison, S. J., and W. T. Parry, 1986, Formation of carbonatesulfate veins associated with copper ore deposits from saline basin brines, Lisbon Valley, Utah: fluid inclusion and isotopic evidence ( USA): Economic Geology, v. 81, p. 1853–1866.

    Google Scholar 

  • Mossop, G. D., 1972, Lower Ordovician evaporites of the Baumann Fiord Formation, Ellesmere Island: In, Report of activities, Pt. B: November 1971 to March 1972. Geol. Surv. Canada, Paper 72-l, Pt. B, 129 pp., p. 86–90.

    Google Scholar 

  • Mossop, G. D., 1973, Lower Ordovician evaporites of the Baumann Fiord Formation, Ellesmere Island,. I: In Report of activities, Pt. A: April to October 1972, Geol. Surv. Canada, Paper 73–1, Pt. A, 297 pp., p. 264–267.

    Google Scholar 

  • Muir, J. L., 1934, Anhydrite-Gypsum Problem of Blaine Formation, Oklahoma: Bulletin American Association Petroleum Geologists, v. 18, p. 1297–1312.

    Google Scholar 

  • Muir, M. D., 1987, Facies models for Australian Precambrian evaporites, in T. M. Peryt, ed., Lecture Notes in Earth Sciences, v. 13: Berlin; New York, Springer-Verlag, p. 5–21.

    Google Scholar 

  • Munyanyiwa, H., 1990, Mineral assemblages in calc-silicates and marbles in the Zambezi Mobile Belt: their implications on mineral-forming reactions during metamorphism: Journal of African Earth Sciences, v. 10, p. 693–700.

    Google Scholar 

  • Murphy, F. C., L. J. Hutton, J. L. Walshe, J. S. Cleverley, M. A. Kendrick, J. Mclellan, M. J. Rubenach, N. H. S. Oliver, K. Gessner, F. P. Bierlein, B. Jupp, L. Aillères, C. Laukamp, I. G. Roy, J. M. Miller, D. Keys, and G. S. Nortje, 2011, Mineral system analysis of the Mt Isa–McArthur River region, Northern Australia: Australian Journal of Earth Sciences, v. 58, p. 849–873.

    Google Scholar 

  • Neudert, M., 1986, A depositional model for the upper Mt Isa Group and implications for ore formation: PhD thesis, Research School of Earth Sciences, Australian National University, Canberra.

    Google Scholar 

  • Neudert, M. K., and M. McGeough, 1996, A new tectonostratigraphic framework for the deposition of the upper McArthur Group, N.T, in T. Baker, J. F. Rotherham, J. M. Richmond, G. Mark, and P. J. Williams, eds., MIC 96, New developments in metallogenic research; the McArthur-Mount Isa-Cloncurry minerals province; extended abstracts. , James Cook University of North Queensland, Geology Department, Townsville, Qld., Australia, p. 90–94.

    Google Scholar 

  • Neudert, M. K., and R. E. Russell, 1981, Shallow water and hypersaline features from the Middle Proterozoic Mt Isa Sequence: Nature, v. 293, p. 284–286.

    Google Scholar 

  • Noble, R. R. P., D. J. Gray, and N. Reid, 2011, Regional exploration for channel and playa uranium deposits in Western Australia using groundwater: Applied Geochemistry, v. 26, p. 1956–1974.

    Google Scholar 

  • Olson, R. A., 1984, Genesis of paleokarst and strata-bound zinc-lead sulfide deposits in a Proterozoic dolostone, northern Baffin Island, Canada: Economic Geology, v. 79, p. 1056–1103.

    Google Scholar 

  • Orgeval, J.-J., D. Giot, J. Karoui, J. Monthel, and R. Sahli, 1989, The discovery and investigations of the Bou Grine Pb-Zn deposit (Tunisian Atlas): Chronique de la Recherche Miniere, v. 57, p. 53–68.

    Google Scholar 

  • Orgeval, J. J., 1994, Peridiapiric metal concentration: example of the Bou Grine deposit (Tunisian Atlas). in L. Fontboté, and M. Boni, eds., Sediment-hosted Zn-Pb ores, Society of Geology Applied to Mineral Deposits; Special Publication No. 10, p. 354–388.

    Google Scholar 

  • Oszczepalski, S., 1989, Kupferschiefer in southwestern Poland: sedimentary environments, metal zoning, and ore controls: Geological Association of Canada Special Paper, v. 36, p. 571–600.

    Google Scholar 

  • Oszczepalski, S., 1994, Oxidative alteration of the Kupferschiefer in Poland: oxide- sulphide parageneses and implications for ore-forming models: Kwartalnik Geologiczny, v. 38, p. 651–671.

    Google Scholar 

  • Oszczepalski, S., and D. Blundell, 2005, 7–4: Kupferschiefer Copper Deposits of SW Poland: Lubin-Sieroszowice District: Lat. 51°35’ N, Long. 16•6’ E: Ore Geology Reviews, v. 27, p. 271–271.

    Google Scholar 

  • Paradis, S., P. Hannigan, and K. Dewing, 2007, Mississippi Valley-type lead-zinc deposits, in W. D. Goodfellow, ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication, Vol. 5, p. 185–203.

    Google Scholar 

  • Perthuisot, V., B. Henry, E. Laatar, A. Mansouri, H. Rouvier, A. Smati, J. Thibieroz, A. Bouzenoune, and N. Hatira, 1999, Les diapirs du Maghreb oriental: part des deformations alpines et des structures initiales cretacees et eocenes dans les formes actuelles Translated Title: Diapirs of the eastern Maghreb: the role of Alpine deformations and of initial Cretaceous and Eocene structures in the present architecture: Bulletin de la Societe Geologique de France, v. 170, p. 57–65.

    Google Scholar 

  • Peryt, T. M., 1989, Basal Zechstein in southwestern Poland: sedimentation, diagenesis, and gas accumulations: Geological Association of Canada Special Paper, v. 36, p. 601–625.

    Google Scholar 

  • Pierret, M. C., N. Clauer, D. Bosch, and G. Blanc, 2010, Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea: Journal of Geochemical Exploration, v. 104, p. 12–26.

    Google Scholar 

  • Pietsch, B. A., D. J. Rawlings, P. M. Creaser, P. D. Kruse, M. Ahmad, P. A. Ferenczi, and T. L. R. Findhammer, 1991, Explanatory Notes-Bauhinia Downs SE53-3: Northern Territory Geological Survey.

    Google Scholar 

  • Pirajno, F., 2009, Hydrothermal Processes and Mineral Systems: Berlin, Springer Science, 1252 p.

    Google Scholar 

  • Pittari, A., 1999, Geology of the Kutarta zinc-lead deposit, Lennard Shelf, Western Australia.: Honours Thesis, University of Melbourne, Department of Earth Sciences, unpublished.

    Google Scholar 

  • Playford, P. E., and M. W. Wallace, 2001, Exhalative Mineralization in Devonian Reef Complexes of the Canning Basin, Western Australia: Economic Geology, v. 96, p. 1595–1610.

    Google Scholar 

  • Polito, P. A., T. K. Kyser, S. D. Golding, and P. N. Southgate, 2006, Zinc Deposits and Related Mineralization of the Burketown Mineral Field, Including the World-Class Century Deposit, Northern Australia: Fluid Inclusion and Stable Isotope Evidence for Basin Fluid Sources: Economic Geology, v. 101, p. 1251–1273.

    Google Scholar 

  • Porter GeoConsultancy, 2004, Dzhezkazgan (Jezkazgan, Zhezkazgan) Copper deposit, Kazakhstan: Porter GeoConsultancy database.

    Google Scholar 

  • Pottorf, R. J., and H. L. Barnes, 1983, Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea: Economic Geology Monographs, v. 5, p. 198–223.

    Google Scholar 

  • Pownceby, M. I., and C. Johnson, 2014, Geometallurgy of Australian uranium deposits: Ore Geology Reviews, v. 56, p. 25–44.

    Google Scholar 

  • Powell, T. G., and R. W. MacQueen, 1984, Precipitation of sulfide ores and organic matter: sulfate reactions at Pine Point, Canada: Science, v. 224, p. 63–66.

    Google Scholar 

  • Princep, D., and A. Hutson, 2010, Langer Heinrich, Namibia: Mineral Resource and Mineral Reserve Estimation: Paladin Energy Ltd.,Technical Report (Effective Date: 15th November 2010).

    Google Scholar 

  • Raiswell, R., and H. J. Al-Biatty, 1992, Depositional and diagenetic C-S-Fe signatures and the potential of shales to generate metal-rich fluids, in M. e. a. Schidlowski, ed., Early organic evolution: Implications for mineral and energy resources: Berlin- Heidelberg, Springer-Verlag, p. 415–425.

    Google Scholar 

  • Ramboz, C., and M. Danis, 1990, Superheating in the Red Sea? The heat-mass balance of the Atlantis II Deep revisited: Earth & Planetary Science Letters, v. 97, p. 190–210.

    Google Scholar 

  • Ramsay, C. R., and J. Ridgway, 1977, Metamorphic patterns in Zambia and their bearing on problems of Zambia tectonic history: Precambrian Research, v. 4, p. 321–337.

    Google Scholar 

  • Randell, R. N., and G. M. Anderson, 1997, Geology of the Polaris Zn-Pb deposit and surrounding area, Canadian Arctic Archipelago, in D. F. Sangster, ed., Carbonate-hosted lead-zinc deposits, Society of Economic Geologists Special Publication, No. 4, p. 307–319.

    Google Scholar 

  • Reed, C. P., and M. W. Wallace, 2004, Zn-Pb mineralisation in the Silvermines district, Ireland: a product of burial diagenesis: Mineralium Deposita, v. 39, p. 87–102.

    Google Scholar 

  • Reich, M., C. Palacios, G. Vargas, S. Luo, E. Cameron, M. Leybourne, M. Parada, A. Zúñiga, and C.-F. You, 2009, Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile: Mineralium Deposita, v. 44, p. 497–504.

    Google Scholar 

  • Reid, S., K. Dewing, and R. Sharp, 2013, Polaris as a guide to northern exploration: Ore textures, paragenesis and the origin of the carbonate-hosted Polaris Zn-Pb Mine, Nunavut, Canada: Ore Geology Reviews, v. 51, p. 27–42.

    Google Scholar 

  • Reynolds, R. L., M. R. Hudson, N. S. Fishman, and J. A. Campbell, 1985, Paleomagnetic and petrologic evidence bearing on the age and origin of uranium deposits in the Permian Cutler Formation, Lisbon Valley, Utah: Geological Society of America Bulletin, v. 96, p. 719–730.

    Google Scholar 

  • Robb, L., 2005, Introduction to Ore-Forming Processes: Oxford, Blackwell Publishing, 373 p.

    Google Scholar 

  • Roberts, H. H., P. Aharon, R. Carney, J. Larkin, and R. Sassen, 1990, Sea floor responses to hydrocarbon seeps, Louisiana continental slope: Geo-Marine Letters, v. 10, p. 232–243.

    Google Scholar 

  • Rose, A. W., 1976, The effect of cuprous chloride complexes in the origin of red-bed copper and related deposits: Economic Geology, v. 71, p. 1036–1048.

    Google Scholar 

  • Rose, A. W., A. T. Smith, R. L. Lustwerk, H. Ohmoto, and I. D. Hoy, 1986, Geochemical aspects of stratiform and red-bed copper deposits in the Catskill Formation (Pennsylvania, USA) and Redstone area (Canada). Sequence of mineralisation in sediment-hosted copper deposits (part 3), in G. H. Friedrich, A. D. Genkin, A. J. Naldrett, J. D. Ridge, R. H. Sillitoe, and F. M. Vokes, eds., Geology and Metallogeny of Copper Deposits: Berlin, Springer-Verlag, p. 412–421.

    Google Scholar 

  • Rospondek, M. J., L. Marynowski, and M. Góra, 2007, Novel arylated polyaromatic thiophenes: Phenylnaphtho[b]thiophenes and naphthylbenzo[b]thiophenes as markers of organic matter diagenesis buffered by oxidising solutions: Organic geochemistry, v. 38, p. 1729–1756.

    Google Scholar 

  • Rouvier, H., V. Perthuisot, and A. Mansouri, 1985, Pb-Zn deposits and salt-bearing diapirs in southern Europe and North Africa: Economic Geology, v. 80, p. 666–687.

    Google Scholar 

  • Ruelle, J. C. L., 1982, Depositional environments and genesis of stratiform copper deposits of the Redstone copper belt, Mackenzie Mountains, N. W. T., in R. W. Hutchison, C. D. Spence, and J. M. Franklin, eds., Precambrian Sulphide Deposits, v. 25, Geological Association of Canada Special Paper, p. 701–737.

    Google Scholar 

  • Ruffell,A. H., N. R. Moles, and J. Parnell, 1998, Characterisation and prediction of sediment-hosted ore deposits using sequence stratigraphy: Ore Geology Reviews, v. 12, p. 207–223.

    Google Scholar 

  • Rutland, R. W. R. R., 1966, An unconformity in the Corocoro basin, Bolivia, and its relation to the copper mineralization: Economic Geology, v. 61, p. 962–964.

    Google Scholar 

  • Salisbury, J. A., A. G. Tomkins, and B. F. Schaefer, 2008, New insights into the size and timing of the Lawn Hill impact structure: relationship to the Century Zn¬†‚Ä쬆Pb deposit: Australian Journal of Earth Sciences, v. 55, p. 587–603.

    Google Scholar 

  • Sangster, D. F., M. D. Burtt, and D. J. Kontak, 1998, Geology of the B baseline Zone, Walton Cu-Pb-Zn-Ag-Ba deposit, Nova Scotia, Canada: Economic Geology, v. 93, p. 869–882.

    Google Scholar 

  • Sangster, D. F., M. M. Savard, and D. J. Kontak, 1998, A genetic model for the mineralisation of Lower Windsor (Visean) carbonate rocks of Nova Scotia, Canada: Economic Geology, v. 93, p. 932–952.

    Google Scholar 

  • Sangster, D. F., and E. M. Hillary, 2000, SEDEX lead-zinc deposits—Proposed subtypes and their characteristics: Exploration and Mining Geology, v. 7, p. 341–357.

    Google Scholar 

  • Savard, M. M., 1996, Pre-ore burial dolomitization adjacent to the carbonate-hosted Gays River Zn-Pb deposit, Nova Scotia: Canadian Journal of Earth Sciences, v. 33, p. 302–315.

    Google Scholar 

  • Savard, M. M., and G. Chi, 1998, Cation study of fluid inclusion decrepitates in the Jubilee and Gays River (Canada) Zn-Pb deposits; characterization of ore-forming brines: Economic Geology, v. 93, p. 920–931.

    Google Scholar 

  • Savard, M. M., G. Chi, T. Sami, A. E. Williams-Jones, and K. Leigh, 2000, Fluid inclusion and carbon, oxygen, and strontium isotope study of the Polaris Mississippi Valley-type Zn–Pb deposit, Canadian Arctic Archipelago: implications for ore genesis: Mineralium Deposita, v. 35, p. 495–510.

    Google Scholar 

  • Savard, M. M., G. Lynch, and F. Fallara, 1996, Burial diagenesis model for the Macumber Formation on Cape Breton Island – implications for the tectonic evolution of the Windsor Group: Atlantic Geology, v. 32, p. 53–64.

    Google Scholar 

  • Savrda, C. E., R. B. Cook, and A. Petrov, 2006, Trace Fossil Preservation by Native Copper, Corocoro, Bolivia: Rocks & Minerals, v. 81, p. 362–363.

    Google Scholar 

  • Schrijver, K., 1992, Basinal brines and groundwaters as possible metal carriers in the formation of sandstone-hosted lead-zinc deposits: Mineralium Deposita, v. 27, p. 109–114.

    Google Scholar 

  • Seewald, J. S., 2003, Organic–inorganic interactions in petroleum-producing sedimentary basins: Nature, v. 426, p. 327–333.

    Google Scholar 

  • Selby, D., R. A. Creaser, K. Dewing, and M. Fowler, 2005, Evaluation of bitumen as a 187Re–187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada: Earth and Planetary Science Letters, v. 235, p. 1–15.

    Google Scholar 

  • Sessions, A. L., S. P. Sylva, R. E. Summons, and J. M. Hayes, 2004, Isotopic exchange of carbon-bound hydrogen over geologic timescales: Geochimica Cosmochimica Acta, v. 68, p. 1545–1559.

    Google Scholar 

  • Seward, T. M., and H. L. Barnes, 1997, Metal transport by hydrothermal ore fluids, in H. L. Barnes, ed., Geochemistry of Hydrothermal Ore Deposits, John Wiley & Sons, p. 435–486.

    Google Scholar 

  • Shanks III, W. C., 1983, Economic and exploration significance of Red Sea metalliferous brine deposits, in W. C. Shank III, ed., Cameron Volume on Unconventional Mineral Deposits: New York, Society of Mining Engineers of the American Institute of Mining Engineering and Petroleum Engineers Monograph, p. 157–171.

    Google Scholar 

  • Shanks III, W. C., and J. L. Bischoff, 1980, Geochemistry, sulfure isotope composition, and accumulation rates of Red Sea geothermal deposits: Economic Geology, v. 75, p. 445–459.

    Google Scholar 

  • Shockey, P. N., and A. R. Renfro, 1974, Copper-silver solution fronts at Paoli, Oklahoma: Economic Geology, v. 69, p. 266–268.

    Google Scholar 

  • Shoemaker, E. M., and C. S. Shoemaker, 1996, The Proterozoic impact record of Australia: AGSO Journal Geology & Geophysics, v. 16, p. 379–398.

    Google Scholar 

  • Sicree, A. A., and H. L. Barnes, 1996, Upper Mississippi Valley district ore fluid model: the role of organic complexes: Ore Geology Reviews, v. 11, p. 105–131.

    Google Scholar 

  • Sillitoe, R., and H. McKee, 1996, Age of supergene oxidation and enrichment in the Chilean porphyry copper province: Economic Geology, v. 91, p. 164–179.

    Google Scholar 

  • Sillitoe, R. H., 2005, Supergene oxidized and enriched porphyry copper and related deposits: Society of Economic Geologists, Economic Geology 100th Anniversary Volume, p. 723–768.

    Google Scholar 

  • Singewald, J. T., and E. W. Berry, 1922, The geology of the Corocoro copper district of Bolivia: Johns Hopkins University studies in geology -- No. 1. 117 p.

    Google Scholar 

  • Spangenberg, J., L. Fontbote, Z. D. Sharp, and J. Hunziker, 1996, Carbon and oxygen isotope study of hydrothermal carbonates in the zinc-lead deposits of the San Vicente district, Central Peru – Quantitative modeling of mixing processes and CO2 degassing: Chemical Geology, v. 133, p. 289–315.

    Google Scholar 

  • Speczik, S., 1995, The Kupferschiefer mineralization of Central Europe: new aspects and major areas of future research: Ore Geology Reviews, v. 9, p. 411–426.

    Google Scholar 

  • Stewart, S.A., 1999, Seismic interpretation of circular geological structures: Petroleum Geoscience, v. 5, p. 273–285.

    Google Scholar 

  • Sun, Y., and W. Püttmann, 1997, Metal accumulation during and after deposition of the Kupferschiefer from the Sangerhausen Basin, Germany: Applied Geochemistry, v. 12, p. 577–592.

    Google Scholar 

  • Sun, Y. Z., W. Püttmann, and S. Speczik, 1995, Differences in the depositional environment of basal Zechstein in southwest Poland – Implications for base metal mineralization: Organic Geochemistry, v. 23, p. 819–835.

    Google Scholar 

  • Susura, B. B., V. O. Glybovsky, and A. V. Kislitsin, 1986, Red-colored terrigenous sediments; specific copper-forming systems, in G. H. Friedrich, A. D. Genkin, A. J. Naldrett, J. D. Ridge, R. H. Sillitoe, and F. M. Vokes, eds., Geology and metallogeny of copper deposits; proceedings of the Copper symposium; 27th international geological congress, v. Special Publication of the Society for Geology Applied to Mineral Deposits, v. 4: Berlin, Springer-Verlag, p. 504–512.

    Google Scholar 

  • Sverjensky, D. A., 1986, Genesis of Mississippi Valley-type lead-zinc deposits: Annual Review of Earth and Planetary Sciences, v. 14, p. 177–199.

    Google Scholar 

  • Sverjensky, D. A., 1989, Chemical evolution of basinal brines that formed sediment-hosted Cu-Pb-Zn deposits, in R. W. Boyle, A. C. Brown, C. W. Jefferson, and E. C. Jowett, eds., Sediment hosted stratiform copper deposits, v. 36, Geological Association of Canada, Special Paper, p. 127–134.

    Google Scholar 

  • Swift, S. A., A. S. Bower, and R. W. Schmitt, 2012, Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea: Deep Sea Research Part I: Oceanographic Research Papers, v. 64, p. 118–128.

    Google Scholar 

  • Symons, D. T. A., and D. F. Sangster, 1992, Late Devonian paleomagnetic age for the Polaris Mississippi Valley-type Zn-Pb deposit, Canadian Arctic Archipelago: Canadian Journal of Earth Sciences, v. 29, p. 15–25.

    Google Scholar 

  • Taylor, C. D., Schulz, K.J., Doebrich, J.L., Orris, G.J., Denning, P.D., and Kirschbaum, M.J., 2009, Geology and nonfuel mineral deposits of Africa and the Middle East: U.S. Geological Survey Open-File Report 2005–1294-E, 246 p.

    Google Scholar 

  • Thiede, D. S., and E. N. Cameron, 1978, Concentration of heavy metals in the Elk Point evaporite sequence, Saskatchewan: Economic Geology, v. 73, p. 405–415.

    Google Scholar 

  • Thorsteinsson, R., and T. T. Uyeno, 1980, Stratigraphy and conodonts of Upper Silurian and Lower Devonian rocks in the environs of the Boothia Uplift, Canadian Arctic Archipelago. Part I, Contributions to stratigraphy by R. Thorsteinsson with contributions by T.T. Uyeno; Part II, Systematic study of conodonts by T.T. Uyeno.: Geological Survey of Canada, Bulletin 292, 75 p.

    Google Scholar 

  • Tornos, F., and C. A. Heinrich, 2008, Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits: Chemical Geology, v. 247, p. 195–207.

    Google Scholar 

  • Tompkins, L. A., V. A. Pedone, M. T. Roche, and D. I. Groves, 1994, The Cadjebut deposit as an example of Mississippi Valley-Type mineralization on the Lennard Shelf, Western Australia – Single episode or multiple events: Economic Geology, v. 89, p. 450–466.

    Google Scholar 

  • Tompkins, L. A., M. J. Rayner, D. I. Groves, and M. T. Roche, 1994, Evaporites; in situ sulfur source for rhythmically banded ore in the Cadjebut Mississippi Valley-Type Zn-Pb deposit, Western Australia: Economic Geology, v. 89, p. 467–492.

    Google Scholar 

  • Ulrich, M. R., J. R. Kyle, and P. E. Price, 1984, Metallic sulfide deposits in the Winnfield salt dome, Louisiana; evidence for episodic introduction of metalliferous brines during cap rock formation: Transactions Gulf Coast Association of Geological Societies, v. 34, p. 435–442.

    Google Scholar 

  • Valenta, R., 1994, Syntectonic discordant copper mineralisation in the Hilton Mine, Mount Isa: Economic Geology, v. 89, p. 1031–1052.

    Google Scholar 

  • Van Wilderode, J., W. Heijlen, D. De Muynck, J. Schneider, F. Vanhaecke, and P. Muchez, 2013, The Kipushi Cu-Zn deposit (DR Congo) and its host rocks: A petrographical, stable isotope (O, C) and radiogenic isotope (Sr, Nd) study: Journal of African Earth Sciences, v. 79, p. 143–156.

    Google Scholar 

  • Vaughan, D. J., M. Sweeney, G. Friedrich, R. Diedel, and C. Haranczyk, 1989, The Kupferschiefer: an overview with an appraisal of the different types of mineralization: Economic Geology, v. 84, p. 1003–1027.

    Google Scholar 

  • Von Bitter, P., H., S. D. Scott, and P. E. Schenk, 1992, Chemosynthesis: An Alternate Hypothesis for Carboniferous Biotas in Bryozoan/Microbial Mounds, Newfoundland, Canada: Palaios, v. 7, p. 466–484.

    Google Scholar 

  • Wade, W. J., J. S. Hanor, and R. Sassen, 1989, Controls on H2S concentration and hydrocarbon destruction in the eastern Smackover trend: Transactions – Gulf Coast Association of Geological Societies, v. 39, p. 309–320.

    Google Scholar 

  • Wagner, T., M. Okrusch, S. Weyer, J. Lorenz, Y. Lahaye, H. Taubald, and R. Schmitt, 2010, The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies: Mineralium Deposita, v. 45, p. 217–239.

    Google Scholar 

  • Walker, R. N., R. G. Logan, and J. G. Binnekamp, 1977a, Recent geological advances concerning the H.Y.C. and associated deposits, McArthur river, N.Y: Journal of the Geological Society of Australia, v. 24, p. 365–380.

    Google Scholar 

  • Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977b, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory,Australia: Nature, v. 265, p. 526–529.

    Google Scholar 

  • Waldron, J. W. F., M. C. Rygel, M. R. Gibling, and J. H. Calder, 2013, Evaporite tectonics and the late Paleozoic stratigraphic development of the Cumberland basin, Appalachians of Atlantic Canada: Geological Society of America Bulletin, v. 125, p. 945–960.

    Google Scholar 

  • Wallace, C. A., J. P. Thorson, J. V. Wright, and J. W. Keller, 2002, Metals and Brines of the Paradox Basin, Colorado and Utah: American Association of Petroleum Geologists Search and Discovery Article #90012©2003; American Association of Petroleum Geologists Hedberg Conference, Vail, Colorado, July 21–26, 2002.

    Google Scholar 

  • Waltho, A. E., and S. J. Andrews, 1993, The Century zinc-lead deposit, northwest Queensland: Proc. Australasian Institute of Mining and Metallurgy conference, Adelaide, 1993, p. 41–61.

    Google Scholar 

  • Wang, A., Q. Peng, and M. R. Palmer, 1998, Salt dome-controlled sulfide precipitation of Paleoproterozoic Fe-Cu sulfide deposits, eastern Liaoning, northeastern China: Economic Geology, v. 93, p. 1–14.

    Google Scholar 

  • Wang, W., and M.-F. Zhou, 2014, Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia: Tectonophysics, v. 610, p. 110–127.

    Google Scholar 

  • Wilde, A., M. Gregory, R. Duncan, K. Gessner, M. Kühn, and P. Jones, 2005, Geochemical process model for the Mt Isa Cu-Co-Ag deposits, in J. Mao, and F. P. Bierlein, eds., Mineral Deposit Research: Meeting the Global Challenge; Proceedings of the Eighth Biennial SGA Meeting Beijing, China, 18–21 August 2005 Berlin, Springer, p. 199–202.

    Google Scholar 

  • Warren, J. K., 2000b, Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis: Australian Journal of Earth Sciences, v. 47, p. 179–208.

    Google Scholar 

  • Warren, J., C. Morley, T. Charoentitirat, I. Cartwright, P. Ampaiwan, P. Khositchaisri, M. Mirzaloo, and J. Yingyuen, 2014, Structural and fluid evolution of Saraburi Group sedimentary carbonates, central Thailand: A tectonically driven fluid system: Marine and Petroleum Geology, v. 55, p. 100–121.

    Google Scholar 

  • Warren, J. K., 1999, Evaporites: their evolution and economics: Oxford, UK, Blackwell Scientific, 438 p.

    Google Scholar 

  • Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.

    Google Scholar 

  • Warren, J. K., and R. H. Kempton, 1997, Evaporite Sedimentology and the Origin of Evaporite-Associated Mississippi Valley-type Sulfides in the Cadjebut Mine Area, Lennard Shelf, Canning Basin, Western Australia., in I. P. Montanez, J. M. Gregg, and K. L. Shelton, eds., Basinwide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations: Tulsa OK, SEPM Special Publication, v. 57, p. 183–205.

    Google Scholar 

  • Wedepohl, K. H., 1964, Untersuchungen am Kupferschiefer in Nordwestdeutschland; ein Beitrag zur Deutung der Genese bitümino ser Sedimente: Geochimica Cosmochimica Acta, v. 28, p. 305–364.

    Google Scholar 

  • Wedepohl, K. H., and J. Rentzsch, 2006, The composition of brines in the early diagenetic mineralization of the Permian Kupferschiefer in Germany: Contributions to Mineralogy and Petrology, v. 152, p. 323–333.

    Google Scholar 

  • Werner, M. L., M. D. Feldman, and L. P. Knauth, 1988, Petrography and geochemistry of water-rock interactions in Richton Dome cap rock (southeastern Mississippi, U.S.A.): Chemical Geology, v. 74, p. 113–135.

    Google Scholar 

  • Wilde, A. R., 2011, Mount Isa copper orebodies: improving predictive discovery: Australian Journal of Earth Sciences, v. 58, p. 937–952.

    Google Scholar 

  • Wilkinson, J. J., B. Stoffell, C. C. Wilkinson, T. E. Jeffries, and M. S. Appold, 2009, Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits: Science, v. 323, p. 764–767.

    Google Scholar 

  • Williams, N., 1978, Studies of base metal sulphide deposits at McArthur River, Northern Territory, Australia II. The sulphide-S and organic-C relationship of concordant deposits and their significance: Economic Geology, v. 73, p. 1036–1056.

    Google Scholar 

  • Williford, K. H., K. Grice, G. A. Logan, J. Chen, and D. Huston, 2011, The molecular and isotopic effects of hydrothermal alteration of organic matter in the Paleoproterozoic McArthur River Pb/Zn/Ag ore deposit: Earth and Planetary Science Letters, v. 301, p. 382–392.

    Google Scholar 

  • Wodzicki, A., and A. Piestrzynski, 1994, An ore genetic model for the Lubin-Sieroszowice mining district: Mineralium Deposita, v. 29, p. 30–43.

    Google Scholar 

  • Wood, S. A., and I. M. Samson, 1998, Solubility of ore minerals and complexation of ore metals in hydrothermal solutions: Reviews in Economic Geology, v. 10, p. 33–80.

    Google Scholar 

  • Worden, R. H., 1996, Controls on halogen concentrations in sedimentary formation waters: Mineralogical Magazine, v. 60, p. 259–274.

    Google Scholar 

  • Wu, C., 2008, Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U): Resource Geology, v. 58, p. 348–354.

    Google Scholar 

  • Zhao, X.-F., and M.-F. Zhou, 2011, Fe–Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide– copper–gold) metallogenic province: Mineralium Deposita, v. 46, p. 731–747.

    Google Scholar 

  • Zhao, X.-F., M.-F. Zhou, J.-W. Li, and L. Qi, 2013, Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China: their possible link to the supercontinent cycle: Mineralium Deposita, v. 48, p. 129–136.

    Google Scholar 

  • Zhao, X.-F., M.-F. Zhou, J.-W. Li, M. Sun, J.-F. Gao, W.-H. Sun, and J.-H. Yang, 2010, Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block: Precambrian Research, v. 182, p. 57–69.

    Google Scholar 

  • Zierenberg, R. A., and W. C. Shanks III, 1983, Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea: Economic Geology, v. 78, p. 57–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Lower Temperature Metals in an Evaporitic Framework. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_15

Download citation

Publish with us

Policies and ethics