Evaporites pp 1187-1302 | Cite as

Non-Potash Salts: Borates, Na-Sulphates, Na-Carbonate, Lithium Salts, Gypsum, Halite and Zolites

  • John K. Warren


In  Chap. 11 we focused on potash deposits and concluded that the larger accumulations of potash that dominate the rock record are marine-derived. That is, the larger potash deposits that are conventionally mined across the world accumulated in ancient tectonic (megahalite) basins with no Quaternary counterpart. We shall now discuss various accumulations of other evaporite salts and related products that are exploited as economic resources, namely the borates, Na-carbonates, Na-sulphates, lithium salts and zeolites, along with short considerations of exploited gypsum and halite deposits (Table 12.1). Other than gypsum and halite, they are typically lacustrine precipitates or brine products, formed by the evaporation of waters with nonmarine ionic proportions and in supra-sealevel depositional settings that do have same-scale pre-Quaternary counterparts (Warren 2010). The marine-derived megahalite and megasulphate deposits, which have no same-scale modern counterparts, were the focus of much of the discussion in earlier chapters. Aspects of these halite and gypsum deposits are only mentioned in passing in this chapter, via a discussion of their annual production volumes and uses, but they are the highest ranked deposits in terms of the weight utilized as mineable or extractable natural resources (Table 12.2). Next in terms of extracted volume is soda ash, then the potash salts, then with an order of magnitude less is salt cake and the borate salts.


Great Salt Lake Native Sulphur Lake Brine Saline Lacustrine Salt Cake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, G. C., 1993, Gypsum and anhydrite resources in Nova Scotia: Economic Geology Series (Halifax), Nova Scotia Department of Natural Resources Information Circular, 15 p.Google Scholar
  2. Ahlfeld, F., and J. Muñoz Reyes, 1955, Las especies minerales de Bolivia, Bilbao, 180 p.Google Scholar
  3. Alçiçek, H., 2009, Late Miocene nonmarine sedimentation and formation of magnesites in the Acıgöl Basin, southwestern Anatolia, Turkey: Sedimentary Geology, v. 219, p. 115–135.Google Scholar
  4. Alderman, A. R., and C. C. von der Borch, 1963, Dolomite reaction series: Nature, v. 198, p. 465–466.Google Scholar
  5. Alderman, S. S. J., 1985, Geology of the Owens Lake evaporite deposit, in B. C. Schreiber, and H. L. Harner, eds., Sixth international symposium on salt, v. 1, Salt Institute, VA, p. 75–83.Google Scholar
  6. Aljubouri, Z. A., and S. Alddabbagh, M., 1980, Sinjarite, a new mineral from Iraq: Mineralogical Magazine, v. 43, p. 643–645.Google Scholar
  7. Alonso, H., and F. Risacher, 1996, Geochemistry of the Salar de Atacama. 1. Origin of components and salt balance [Spanish]: Revista Geologica de Chile, v. 23, p. 113–122.Google Scholar
  8. Alonso, R., 1991, Evaporitas neógenas de los Andes Centrales, in J. J. Pueyo, ed., Génesis de Formaciones Evaporíticas. Modelos Andinos e Ibéricos, Universitat de Barcelona. Estudi General, v. 2, p. 267–329.Google Scholar
  9. Alonso, R. N., 1986, Ocurrencia, posición estratigráfica y génesis de los depósitos de boratos de la Puna Argentina: Doctoral thesis, Universidad Nacional de Salta, Argentina, 196 p.Google Scholar
  10. Alonso, R. N., C. Helvacı, R. J. Sureda, and J. G. Viramonte, 1988, A new Tertiary borax deposit in the Andes: Mineralium Deposita, v. 23, p. 299–305.Google Scholar
  11. Alonso, R. N., T. E. Jordan, K. T. Tabbutt, and D. S. Vandervoort, 1991, Giant evaporite belts of the Neogene central Andes: Geology, v. 19, p. 401–404.Google Scholar
  12. Angulo, M. A., 2011, Iodine: U.S. Geological Survey, 2010 Minerals Yearbook, (Advanced release – Sept 2011)Google Scholar
  13. Apodaca, L. E., 2012, Sulfur Mining Engineering, v. 64, p. 91–92.Google Scholar
  14. Aref, M. A. M., 1998b, Biogenic carbonates – are they a criterion for underlying hydrocarbon accumulations – an example from the Gulf of Suez region: Bulletin American Association of Petroleum Geologists, v. 82, p. 336–352.Google Scholar
  15. Armenteros, I., 2010, Chapter 2 Diagenesis of Carbonates in Continental Settings, in A. M. Alonso-Zarza, and L. H. Tanner, eds., Developments in Sedimentology, v. Volume 62, Elsevier, p. 61–151.Google Scholar
  16. Atia, A. K. M., E. E. Hilmy, and S. M. Bolous, 1970, Mineralogy of the Salt Deposits of Wadi El Natrun: Arab Republic of Egypt, Desert Institute Bulletin, v. 20, p. 49–74.Google Scholar
  17. Aufderheide, A. C., 2011, The Scientific Study of Mummies, Cambridge University Press, 634 p.Google Scholar
  18. Augustithis, S. S., 1980, On the textures and treatment of the sylvinite ore from the Danakili Depression, Salt Plain (Piano del Sale), Tigre, Ethiopia: Chem. Erde., v. 39, p. 91–95.Google Scholar
  19. Austin, G. S., and B. Humphrey, 2006, Sodium sulfate resources, in J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski, eds., Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), p. 879–892.Google Scholar
  20. Barker, J. M., D. E. Cochran, and R. Semrad, 1979, Economic geology of the Mishraq native sulfur deposit, northern Iraq: Economic Geology, v. 74, p. 484–495.Google Scholar
  21. Barnard, R. M., and R. B. Kistler, 1966, Stratigraphic and Structural Evolution of the Kramer Sodium Borate Body, Boron, California: Second Symposium on Salt, Northern Ohio Geological Society, Cleveland, OH, v. 1, p. 133–150.Google Scholar
  22. Baskina, V. A., 2008, Sources of boron from the Dal’negorsk borosilicate deposit: Doklady Earth Sciences, v. 423, p. 1308–1311.Google Scholar
  23. Beeby, D. J., 2002, Borate deposits in California: past, present and future, in P. W. Scott, and C. M. Bristow, eds., Industrial minerals and Extractive Industry Geology, v. Geological Society of London Miscellaneous Titles, p. 87–92.Google Scholar
  24. Bissell, H. J., and G. V. Chilingar, 1962, Evaporite type dolomite in salt flats of western Utah: Sedimentology, p. 200–210.Google Scholar
  25. Bobst, A. L., T. K. Lowenstein, T. E. Jordan, L. V. Godfrey, T. L. Ku, and S. D. Luo, 2001, A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile: Palaeogeography Palaeoclimatology Palaeoecology, v. 173, p. 21–42.Google Scholar
  26. Boschetti, T., G. Cortecci, M. Barbieri, and M. Mussi, 2007, New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile: Geofluids, v. 7, p. 33–50.Google Scholar
  27. Bourrouilh, L.-J. F., J. L. Carsin, P. M. Niasussat, and Y. Thommeret, 1985, Sédimentation phosphatée actuelle dans le lagon confiné de l’Ile de Clipperton (Océan Pacifique). Datations, sédimentologie et géochimie: Sciences géologiques, Mémoire, Strasbourg,, v. 77, p. 109–124.Google Scholar
  28. Bowser, C. J., and F. W. Dickson, 1966, Chemical zonation of the borates at Kramer, California: Second Symposium on Salt, Northern Ohio Geological Society, Cleveland, OH, v. 1, p. 122–132.Google Scholar
  29. Bowser, C. J., T. A. Rafter, and R. F. Black, 1970, Geochemical evidence for the origin of mirabilite deposits near Hobbs Glacier, Victoria Land, Antarctica: Mineralogical Society America Special Paper, v. 3, p. 261–272.Google Scholar
  30. Bradley, D., L. Munk, H. Jochens, S. Hynek, and K. Labay, 2013, A Preliminary Deposit Model for Lithium Brines: USGS Open-File Report 2013–1006.Google Scholar
  31. Braithwaite, C. J. R., and V. Zedef, 1994, Living hydromagnesite stromatolites from Turkey: Sedimentary Geology, v. 92, p. 1–5.Google Scholar
  32. Braithwaite, C. J. R., and V. Zedef, 1996, Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Golu, Turkey: Journal of Sedimentary Research A: Sedimentary Petrology and Processes, v. 66, p. 991–1002.Google Scholar
  33. Braitsch, O., 1964, The temperature of evaporite formation, in A. E. M. Nairn, ed., Problems in palaeoclimatology: New York, Wiley, p. 479–490.Google Scholar
  34. Breck, D. W., 1974, Zeolite Molecular Sieves: New York, Wiley-Interscience, 771 p.Google Scholar
  35. Briggs, M., 2007, Boron Oxides, Boric acid and Borates, Kirk-Othmer Encyclopedia of Chemical Technology, v. 4, John Wiley & Sons, Inc., p. 241–294.Google Scholar
  36. Burban, B., 1990, Kunwarara magnesite deposit, in F. E. Hughes, ed., Geology of the mineral deposits of Australia and Papua New Guinea, Australasian Institute of Mining and Metallurgy Monograph Series, Volume 14 (2), p. 1675–1677.Google Scholar
  37. Bush, P., 1973, Some aspects of the diagenetic history of the sabkha in Abu Dhabi, Persian Gulf, in B. H. Purser, ed., The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea: New York, Springer Verlag, p. 395–407.Google Scholar
  38. Butts, D., 2007, Chemicals from Brines, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., p. 784–803.Google Scholar
  39. Butts, D., and D. R. Bush, 2007, Sodium sulfates and sulfides, Kirk-Othmer Encyclopedia of Chemical Technology, v. 20, John Wiley & Sons, Inc., p. 1–15.Google Scholar
  40. Callao, S., E. Arce, and A. Andia, 2002, Mineralogia, quimica e inclsiones fluidas en lo depositos de nitratos de Maria elena, Lla region, Chile: Bol. Soc. Chil. Quím., v. 47, p. 181–190.Google Scholar
  41. Camur, M. Z., and H. Mutlu, 1996, Major-ion geochemistry and mineralogy of the Salt Lake (Tuz Golu) basin, Turkey: Chemical Geology, v. 127, p. 313–329.Google Scholar
  42. Carmona, V., J. J. Pueyo, C. Taberner, G. Chong, and M. Thirlwall, 2000, Solute inputs in the Salar de Atacama (N. Chile): Journal of Geochemical Exploration, v. 69, p. 449–452.Google Scholar
  43. Casas, E., and T. K. Lowenstein, 1989, Diagenesis of saline pan halite; comparison of petrographic features of modern, Quaternary and Permian halites: Journal of Sedimentary Petrology, v. 59, p. 724–739.Google Scholar
  44. Casey, W. H., and B. Bunker, 1990, Leaching of mineral and glass surfaces during, in M. F. Hochella, and A. F. White, eds., Mineral–Water Interface Geochemistry, Reviews in Mineralogy, v. 23, p. 397–426.Google Scholar
  45. Chen, Y., 1986, Hydrochemistry and evolution of interstitial brine in the Zhabuye saline lake of Tibet. (Chinese): Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, v. 18, p. 176–184.Google Scholar
  46. Chong, G., J. J. Pueyo, and C. Demergasso, 2000, The borate deposits in Chile. [Spanish]: Revista Geologica de Chile, v. 27, p. 99–119.Google Scholar
  47. Christ, C. L., and R. M. Garrels, 1959, Relations among sodium borate hydrates at the Kramer deposit, Boron, California: American Journal of Science, v. 257, p. 516–528.Google Scholar
  48. Cole, R. D., 1985, Depositional environment of oil shale in the Green River Formation, Douglas Creek Arch, Colorado and Utah, in M. D. Picard, ed., Geology and Energy Resources, Uinta Basin of Utah: Salt Lake City, Utah, Utah Geological Association, p. 211–224.Google Scholar
  49. Colman, S. M., K. Kelts, and D. A. Dinter, 2002, Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy: Sedimentary Geology, v. 148, p. 61–78.Google Scholar
  50. Coshell, L., M. R. Rosen, and K. J. McNamara, 1998, Hydromagnesite replacement of biomineralized aragonite in a new location of Holocene stromatolites, Lake Walyungup, Western Australia: Sedimentology, v. 45, p. 1005–1018.Google Scholar
  51. Crétaux, J. F., W. Jelinski, S. Calmant, A. Kouraev, V. Vuglinski, M. Bergé-Nguyen, M. C. Gennero, F. Nino, R. Abarca Del Rio, A. Cazenave, and P. Maisongrande, 2011, SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data: Advances in Space Research, v. 47, p. 1497–1507.Google Scholar
  52. Crétaux, J.-F., R. Létolle, and S. Calmant, 2009, Investigations on Aral Sea Regressions from Mirabilite Deposits and Remote Sensing: Aquatic Geochemistry, v. 15, p. 277–291.Google Scholar
  53. Crowley, J. K., 1993, Mapping playa evaporite minerals with AVIRIS data; a first report from Death Valley, California: Remote Sensing of Environment, v. 44, p. 337–356.Google Scholar
  54. Culbertson, W. C., 1966, Trona in the Wilkins Peak Member of the Green River Formation, southwestern Wyoming: Geological Survey research.Google Scholar
  55. D’Ans, J., 1961, Uber die Bildungsmöglichkeiten des Tachhydrits in Kalisalzlagerstàtten: Kali and Steinsalz, v. 3, p. 119.Google Scholar
  56. Davis, J. B., and D. W. Kirkland, 1979, Bioepigenetic sulfur deposits: Economic Geology, v. 74, p. 462–468.Google Scholar
  57. Davis, J. R., I. Friedman, and J. D. Gleason, 1986, Origin of the lithium-rich brine, Clayton Valley, Nevada: US Geological Survey Bulletin, v. 1622, p. 131–138.Google Scholar
  58. Deelman, J. C., 2011, Low-temperature formation of dolomite and magnesite * A comprehensive revision*: Compact Disc Publications, Geology Series, version 2.3 Compact Disc Publications, Eindhoven, The Netherlands. http://www.jcdeelman.
  59. Dubinina, E. O., V. A. Baskina, and A. S. Avdeenko, 2011, Nature of ore-forming fluids of the Dal’negorsk deposit: Isotopic and geochemical parameters of the altered host rocks: Geology of Ore Deposits, v. 53, p. 58–73.Google Scholar
  60. Dunning, G. E., and J. F. J. Cooper, 1969, A second occurrence of antarcticite, from Bristol Dry Lake, California: American Mineralogist, v. 54, p. 1018–1025.Google Scholar
  61. Dyni, J. R., 1981, Geology of the nahcolite deposits and oil shales of the Green River Formation in the Piceance Creek Basin, Colorado: Doctoral thesis, University of Colorado, Boulder, 182 p.Google Scholar
  62. Dyni, J. R., 1996, Sodium carbonate resources of the Green River Formation: United States Geological Survey, Open File Report, v. 96–729, p. 39 p.Google Scholar
  63. Eardley, A. J., 1962, Gypsum dunes and evaporite history of the Great Salt Lake Desert: Utah Geol. and Mineralog. Survey Spec. Studies vol. 2, 27 p.Google Scholar
  64. Eckardt, F. D., R. G. Bryant, G. McCulloch, B. Spiro, and W. W. Wood, 2008, The hydrochemistry of a semi-arid pan basin case study: Sua Pan, Makgadikgadi, Botswana: Applied Geochemistry, v. 23, p. 1563–1580.Google Scholar
  65. El Tabakh, M., R. Riccioni, and B. C. Schreiber, 1997, Evolution of Late Triassic rift basin evaporites (Passaic Formation) – Newark Basin, eastern North America: Sedimentology, v. 44, p. 767–790.Google Scholar
  66. English, P. M., 2001, Formation of analcime and moganite at Lake Lewis, central Australia: significance of groundwater evolution in diagenesis: Sedimentary Geology, v. 143, p. 219–244.Google Scholar
  67. Ericksen, G. E., 1981, Geology and origin of the Chilean nitrate deposits: US Geological Survey Prof. Paper, v. 1188, p. 37 pp.Google Scholar
  68. Ericksen, G. E., 1983, The Chilean nitrate deposits: American Scientist, v. 71, p. 366–374.Google Scholar
  69. Ericksen, G. E., 1993, Upper Tertiary and Quaternary continental saline deposits in the central Andean region: Geological Association of Canada Special Paper, v. 40, p. 89–102.Google Scholar
  70. Ericksen, G. E., and M. E. Mrose, 1972, High-purity veins of soda-niter, NaN03, and associated saline minerals in the Chilean nitrate deposits: USGS Professional Paper 800-B, p. B43-B50.Google Scholar
  71. Eugster, H. P., 1986, Lake Magadi, Kenya; a model for rift valley hydrochemistry and sedimentation?, in L. E. Frostick, R. W. Renaut, I. Reid, and J. J. Tiercelin, eds., Sedimentation in the African rifts, Geological Society Special Publication 25, p. 177–189.Google Scholar
  72. Eugster, H. P., and G. Maglione, 1979, Brines and evaporites of the Lake Chad basin, Africa: Geochim. Cosmochim. Acta., v. 43, p. 973–982.Google Scholar
  73. Eyde, T. H., and D. T. Eyde, 1987, The Bowie chabazite deposit, in H. W. Peirce, ed., 21st Forum on the Geology of Industrial Minerals, v. 4, Arizona Bur. Geol. and Min. Tech Spec. Paper., p. 133.Google Scholar
  74. Fischer, A. G., and L. T. Roberts, 1991, Cyclicity in the Green River Formation (lacustrine Eocene) of Wyoming: Journal of Sedimentary Petrology, v. 61, p. 1146–1154.Google Scholar
  75. Foshag, W., 1921, The origin of the colemanite deposits of California: Economic Geology, v. 16, p. 194–214.Google Scholar
  76. Frank, T. D., and C. R. Fielding, 2003, Marine origin for Precambrian, carbonate-hosted magnesite?: Geology, v. 31, p. 1101–1104.Google Scholar
  77. Gac, J. Y., A. Al-Droubi, H. Paquet, B. Fritz, and Y. Tardy, 1977, Chemical model for origin and distribution of elements in salts and brines during evaporation of waters. Application to some saline lakes of Tibesti, Chad: Physics and Chemistry of the Earth, New York, v. 11, p. 149–158.Google Scholar
  78. García-Veigas, J., and C. Helvacı, 2013, Mineralogy and sedimentology of the Miocene Göcenoluk borate deposit, Kırka district, western Anatolia, Turkey: Sedimentary Geology, v. 290, p. 85–96.Google Scholar
  79. GarcÌa-Veigas, J., L. Rosell, F. OrtÌ, I. Gundogan, and C. HelvacI, 2011b, Mineralogy, diagenesis and hydrochemical evolution in a probertite-glauberite-halite saline lake (Miocene, Emet Basin, Turkey): Chemical Geology, v. 280, p. 352–364.Google Scholar
  80. Garrels, R. M., and F. T. Mackenzie, 1981, Evolution of sedimentary rocks: New York, W. W. Norton and Co.Google Scholar
  81. Garrett, D., 2004, Handbook of lithium and natural calcium chloride, Elsevier Academic Press, 460 p.Google Scholar
  82. Garrett, D. E., 1985, Chemistry and origin of the Chilean nitrate deposits: Sixth international symposium on salt, v. 1, p. 285–302.Google Scholar
  83. Garrett, D. E., 1995, Potash: Deposits, processing, properties and uses: Berlin, Springer, 752 p.Google Scholar
  84. Garrett, D. E., 1998, Borates: Deposits, processing, properties and use: Amsterdam, Elsevier.Google Scholar
  85. Garrett, D. E., 2001, Sodium sulfate: Handbook of deposits, processing, properties and uses: Amsterdam, Elsevier, 384 p.Google Scholar
  86. Garrett, D. E., 2002, Sodium sulfate – 5,000 years of mining and production of salt cake: Mining Engineering, v. February, 2002, p. 17–22.Google Scholar
  87. Gierlowski-Kordesch, E. H., 2010, Chapter 1 Lacustrine Carbonates, in A. M. Alonso-Zarza, and L. H. Tanner, eds., Developments in Sedimentology, v. Volume 61, Elsevier, p. 1–101.Google Scholar
  88. Giralt, S., R. Julià, S. Leroy, and F. Gasse, 2003, Cyclic water level oscillations of the KaraBogazGol–Caspian Sea system: Earth and Planetary Science Letters, v. 212, p. 225–239.Google Scholar
  89. Godfrey, L. V., L. H. Chan, R. N. Alonso, T. K. Lowenstein, W. F. McDonough, J. Houston, J. Li, A. Bobst, and T. E. Jordan, 2013, The role of climate in the accumulation of lithium-rich brine in the Central Andes: Applied Geochemistry, v. 38, p. 92–102.Google Scholar
  90. Graf, D. L., A. J. Eardley, and N. F. Shimp, 1961, A preliminary report on magnesium carbonate formation in Glacial Lake Bonneville: Journal of Geology.Google Scholar
  91. Grasby, S. E., I. Rod Smith, T. Bell, and D. L. Forbes, 2013, Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic: Geochimica et Cosmochimica Acta, v. 110, p. 13–28.Google Scholar
  92. Grew, E., J. Bada, and R. Hazen, 2011, Borate Minerals and Origin of the RNA World: Origins of Life and Evolution of Biospheres, v. 41, p. 307–316.Google Scholar
  93. Grosjean, E., G. D. Love, A. E. Kelly, P. N. Taylor, and R. E. Summons, 2012, Geochemical evidence for an Early Cambrian origin of the “Q”oils and some condensates from north Oman: Organic geochemistry, v. 45, p. 77–90.Google Scholar
  94. Grossman, I. G., 1968, Origin of the sodium sulphate deposits of the northern Great Plains of Canada and the United States: U. S. Geol. Surv. Prof. Pap., v. 600-B, p. 104–109.Google Scholar
  95. Gruber, P., W., P. Medino, A., G. Keoleian, A., S. E. Kesler, M. P. Everson, and T. J. Wallington, 2011, Global Lithium Availability: Journal of Industrial Ecology, v. 15, p. 760–775.Google Scholar
  96. Gundogdu, M. N., H. Yalcin, A. Temel, and N. Clauer, 1996, Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadic, Emet and Kirka Neogene lacustrine basins, western Turkey: Mineralium Deposita, v. 31, p. 492–513.Google Scholar
  97. Gundogan, I., and C. Helvaci, 2001, Sedimentological and petrographical aspects of Upper Miocene evaporites in the Beypazari and Cankiri-Corum basins, central Anatolia, Turkey: International Geology Review, v. 43, p. 818–829.Google Scholar
  98. Hall, A., 1998, Zeolitization of volcaniclastic sediments: The role of temperature and pH: Journal of Sedimentary Research, v. 68, p. 739–745.Google Scholar
  99. Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43–106.Google Scholar
  100. Hardie, L. A., and H. P. Eugster, 1970, The evolution of closed-basin brines: Spec Pub. Mineral. Soc. Am., v. 3, p. 273–290.Google Scholar
  101. Hartley, A., S. Flint, and P. Turner, 1991, Analcime: a characteristic authigenic phase of Andean alluvium, northern Chile: Geological Journal, v. 26, p. 189–202.Google Scholar
  102. Hay, R. L., 1963, Zeolitic weathering in Olduvai Gorge, Tanganyika: Geological Society America Bulletin, v. 74, p. 1281–1286.Google Scholar
  103. Hay, R. L., 1981, Geology of zeolites in sedimentary rocks, in F. A. Mumpton, ed., Mineralogy and geology of natural zeolites, Min. Soc. America Reviews in Mineralogy, v. 4, p. 165–175.Google Scholar
  104. Hay, R. L., S. G. Guldman, J. C. Matthews, R. H. Lander, M. E. Duffin, and T. K. Kyser, 1991, Clay mineral diagenesis in core KM-3 of Searles Lake, California: Clays & Clay Minerals, v. 39, p. 84–96.Google Scholar
  105. Hay, R. L., and T. K. Kyser, 2001, Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania: Geological Society of America Bulletin, v. 113, p. 1510–1521.Google Scholar
  106. Helvaci, C., 1994, Mineral assemblages and formation of the Kestelek and Sultancayir borate deposits: 29th International Geological Congress, Proceedings Part A, Kyoto, Japan, 24 August – 3 September, 1992, p. 245–284.Google Scholar
  107. Helvaci, C., 1995, Stratigraphy, mineralogy, and genesis of the Bigadic Borate deposits, Western Turkey: Economic Geology, v. 90, p. 1237–1260.Google Scholar
  108. Helvaci, C., 1998, The Beypazari trona deposit, Ankara Province, Turkey., in J. R. Dyni, and R. W. Jones, eds., Proceedings of the first international soda ash conference; Volume II: Laramie, WY, Public Information Circular – Geological Survey of Wyoming, v. 40, p. 67–103.Google Scholar
  109. Helvaci, C., and R. C. Alonso, 2000, Borate Deposits of Turkey and Argentina; A Summary and Geological Comparison: Turkish Journal of Earth Sciences, v. 9, p. 1–27.Google Scholar
  110. Helvaci, C., and F. Orti, 1998, Sedimentology and diagenesis of Miocene colemanite-ulexite deposits (western Anatolia, Turkey): Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68A, p. 1021–1033.Google Scholar
  111. Helvaci, C., and F. Orti, 2004, Zoning in the Kirka borate deposit, western Turkey: Primary evaporitic fractionation of diagenetic modifications?: Canadian Mineralogist, v. 42, p. 1221–1246.Google Scholar
  112. Herrero, M. J., A. Martín-Pérez, A. M. Alonso-Zarza, I. Gil-Peña, A. Meléndez, and R. Martín-García, 2011, Petrography and geochemistry of the magnesites and dolostones of the Ediacaran Ibor Group (635 to 542Ma), Western Spain: Evidences of their hydrothermal origin: Sedimentary Geology, v. 240, p. 71–84.Google Scholar
  113. Hill, B. F., 1993, Magnesite and magnesia production by Queensland Magnesia (Operations) Pty Ltd at Kunwarara and Rockhampton, Qld, in J. T. Woodcock, and J. K. Hamilton, eds., Australasian mining and metallurgy; the Sir Maurice Mawby Memorial volume: Melbourne, Victoria, Australia, Australasian Institute of Mining and Metallurgy, v. 19, p. 1388–1393.Google Scholar
  114. Hill, C. A., 1995, H2S-related porosity and sulfuric acid oilfield karst, in D. A. Budd, A. H. Saller, and P. M. Harris, eds., Unconformities and porosity in carbonate strata, American Association Petroleum Geologists Memoir 63, p. 301–306.Google Scholar
  115. Horita, J., 2009, Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions: Aquatic Geochemistry, v. 15, p. 43–69.Google Scholar
  116. Houston, S., C. Smalley, A. Laycock, and B. W. D. Yardley, 2011, The relative importance of buffering and brine inputs in controlling the abundance of Na and Ca in sedimentary formation waters: Marine and Petroleum Geology, v. 28, p. 1242–1251.Google Scholar
  117. Inan, K., A. C. Dunham, and J. Esson, 1973, Mineralogy, chemistry and origin of Kirka borate deposit, Eskishehir Province, Turkey: Trans. Inst. Mining Metall., Appl. Earth Sci., v. B-82, p. 114–123.Google Scholar
  118. Irion, G., and G. Mueller, 1968, Huntite, dolomite, magnesite and polyhalite of Recent age from Tuz Golu, Turkey: Nature, v. 220, p. 1309–1310.Google Scholar
  119. Jones, B., and R. W. Renaut, 1994, Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes, Boliva: Sedimentology, v. 41, p. 1171–1202.Google Scholar
  120. Jones, B. F., H. P. Eugster, and S. L. Rettig, 1977, Hydrogeochemistry of the Lake Magadi Basin, Kenya: Geochimica Cosmochimica Acta, v. 41, p. 53–72.Google Scholar
  121. Jordan, T. E., N. Muñoz, M. Hein, T. K. Lowenstein, L. Godfrey, and J. Yu, 2002, Active faulting and folding without topographic expression in an evaporite basin, Chile: Geological Society of America Bulletin, v. 114, p. 1406–1421.Google Scholar
  122. Karpychev, Y., 2007, Variations in the sedimentation in Kara Bogaz Gol Bay related to sea level fluctuations during the Novocaspian time: Oceanology, v. 47, p. 857–864.Google Scholar
  123. Keeling, J., and A. Mauger, 1998, New airborne HyMap data aids assessment of magnesite resources: MESA Journal, v. 11, p. 7–11.Google Scholar
  124. Kendrick, M., and P. Burnard, 2013, Noble Gases and Halogens in Fluid Inclusions: A Journey Through the Earth’s Crust, in P. Burnard, ed., The Noble Gases as Geochemical Tracers: Advances in Isotope Geochemistry, Springer Berlin Heidelberg, p. 319–369.Google Scholar
  125. Kesler, S. E., P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson, and T. J. Wallington, 2012, Global lithium resources: Relative importance of pegmatite, brine and other deposits: Ore Geology Reviews, v. 48, p. 55–69.Google Scholar
  126. Kinsman, David, J, and J, 1967, Huntite from a carbonate-evaporite environment: Amer. Mineral., v. 52, p. 9–10.Google Scholar
  127. Kistler, R. B., and W. C. Smith, 1983, Boron and borates, in S. J. Lefond, ed., Industrial Minerals and Rocks: New York, AIME, p. 533–560.Google Scholar
  128. Kogel, J. E., N. C. Trivedi, J. M. Barker, and S. T. Krukowski, 2006, Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), 1548 p.Google Scholar
  129. Kosarev, A., A. Kostianoy, and I. Zonn, 2009, Kara-Bogaz-Gol Bay: Physical and Chemical Evolution: Aquatic Geochemistry, v. 15, p. 223–236.Google Scholar
  130. Kostick, D. S., 2011, Soda Ash: U.S. Geological Survey, 2010 Minerals Yearbook, (Advanced release – Sept 2011)Google Scholar
  131. Kostick, D. S., 2012, Sodium Sulfate: U.S. Geological Survey, Mineral Commodity Summaries, January 2012.Google Scholar
  132. Kunasz, I., 2006, Lithium Resources, in J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski, eds., Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), p. 599–614.Google Scholar
  133. Kunasz, I. A., 1983, Lithium raw materials, in S. J. Lefond, ed., Industrial minerals and rocks: New York, AIME, p. 869–880.Google Scholar
  134. Kuntze, R. A., 2009, Gypsum: Connecting Science and Technology: West Conshohocken, PA, ASTM International, 114 p.Google Scholar
  135. Kurilenko, V. V., I. G. Ruday, and A. A. Shvarts, 1988, The origin and commercial exploitation of subsurface brines in the northern half of Kara-Bogaz-Gol: International Geology Reviews, v. 30, p. 1238–1245.Google Scholar
  136. Kurlansky, M., 2002, Salt: A world history: New York, Walker & Co., 484 p.Google Scholar
  137. Kyle, J. R., 1991, Evaporites, evaporitic processes and mineral resources, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.Google Scholar
  138. Last, W. M., 1989a, Continental brines and evaporites of the northern Great Plains of Canada: Sedimentary Geology, v. 64, p. 207–221.Google Scholar
  139. Last, W. M., 1989b, Sedimentology of a saline playa in the northern Great Plains, Canada: Sedimentology, v. 36, p. 109–123.Google Scholar
  140. Last, W. M., 1993a, Salt dissolution features in saline lakes of the northern Great Plains, western Canada: Geomorphology, v. 8, p. 321–334.Google Scholar
  141. Last, W. M., 1994, Deep-water evaporite mineral formation in lakes of Western Canada, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, v. 50, SEPM Special Publication, p. 51–59.Google Scholar
  142. Last, W. M., 2002, Geolimnology of salt lakes: Geosciences Journal, v. 6, p. 347–369.Google Scholar
  143. Last, W. M., and F. M. Ginn, 2005, Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology: Saline Systems, v. 1, p. Article is available from
  144. Last, W. M., and R. E. Vance, 1997, Bedding characteristics of Holocene sediments from salt lake of the Northern Great Plains, western Canada: Journal of Paleolimnology, v. 17, p. 297–318.Google Scholar
  145. Lauterbach, A., 2007, Iodine and Iodine compounds, Kirk-Othmer Encyclopedia of Chemical Technology, v. 14, John Wiley & Sons, Inc., p. 1–30.Google Scholar
  146. Lebedeva, M., O. Lopukhina, and N. Kalinina, 2008, Specificity of the chemical and mineralogical composition of salts in solonchak playas and lakes of the Kulunda steppe: Eurasian Soil Science, v. 41, p. 416–428.Google Scholar
  147. Lee, R. V., 2001, Maladies, malaise, and modernization: health and development in Ladakh: Asian Affairs, v. 32, p. 300–306.Google Scholar
  148. Lefond, S. J., and J. M. Barker, 1979, A borate and zeolite occurrence near Magdalena, Sonora, Mexico: Economic Geology, v. 74, p. 1883–1889.Google Scholar
  149. Leroy, S. A. G., F. Marret, S. Giralt, and S. A. Bulatov, 2006, Natural and anthropogenic rapid changes in the Kara-Bogaz Gol over the last two centuries reconstructed from palynological analyses and a comparison to instrumental records: Impact of rapid environmental changes on humans and ecosystems, v. 150, p. 52.Google Scholar
  150. Li, M., G. Ma, K. Guttikonda, S. Boyages, and C. Eastman, 2001, The re-emergence of iodine deficiency in Sydney, Australia: Asia Pacific J of Clin. Nutr., v. 10, p. 200–203.Google Scholar
  151. Low, R., D. M. Anderson, R. A. Boak, and G. Nkala, 2000, An Investigation of Solar Evaporation Pond Leakage and Possible Remedial Measures at Sua Pan, Botswana, in R. M. Geertmann, ed., Eighth World Salt Symposium; The Hague, Netherlands, 7–11 May 2000 v. 1: Amsterdam, Elsevier, p. 523–528.Google Scholar
  152. Lowenstein, T. K., and R. V. Demicco, 2006, Elevated Eocene Atmospheric and Its Subsequent Decline: Science, v. 313, p. 1928.Google Scholar
  153. Lowenstein, T. K., and M. N. Timofeeff, 2008, Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis: Geofluids, v. 8, p. 77–92.Google Scholar
  154. Manega, P. C., and S. Bieda, 1987, Modern sediments of Lake Natron, Tanzania: Sciences Geologiques – Bulletin, v. 40, p. 83–95.Google Scholar
  155. Mariner, R. H., and R. C. Surdam, 1970, Alkalinity and formation of zeolites in saline alkaline lakes: Science, v. 170, p. 977–980.Google Scholar
  156. McKibben, M. A., A. E. Williams, W. A. Elders, and C. S. Eldridge, 1987, Saline brines and metallogenesis in a modern sediment-filled rift; the Salton Sea geothermal system, California, U.S.A.: Applied Geochemistry, v. 2, p. 563–578.Google Scholar
  157. McNeal, R. P., and G. A. Hemenway, 1972, Geology of Fort Stockton Sulfur Mine, Pecos County, Texas: Bulletin American Association of Petroleum Geologists, v. 56, p. 26–37.Google Scholar
  158. Mees, F., C. CastaÒeda, J. Herrero, and E. Van Ranst, 2011, Bloedite sedimentation in a seasonally dry saline lake (Salada Mediana, Spain): Sedimentary Geology, v. 238, p. 106–115.Google Scholar
  159. Melezhik, V. A., A. E. Fallick, P. V. Medvedev, and V. V. Makarikhin, 2001, Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments: Sedimentology, v. 48, p. 379–397.Google Scholar
  160. Menduina, J., S. Ordonez, and M. A. Garcia del Cura, 1984, Geologia del yacimiento de glauberita de Cerezo del Rio Tiron (Provincia de Burgos): Boletin Geologico y Minero, Instituto Geologico y Minero de Espana, v. 95, p. 33–51.Google Scholar
  161. Milburn, D., and S. Wilcock, 1998, Kunwarara Magnesite Deposit, in D. A. Berkman, and D. H. MacKenzie, eds., Geology of Australian and Papua New Guinean Mineral Deposits, Australasian Institute of Mining and Metallurgy, Melbourne, p. 815–818.Google Scholar
  162. Martin, J. B., J. M. Gieskes, M. Torres, and M. Kastner, 1993a, Bromine and iodine in Peru Margin sediments and pore fluids – Implications for fluid origins: Geochimica et Cosmochimica Acta, v. 57, p. 4377–4389.Google Scholar
  163. Muessig, S., 1958, First known occurrence of inyoite in a playa at Laguna Salinas: Am. Mineral., v. 43, p. 1144–1147.Google Scholar
  164. Muessig, S. J., 1966, Recent South America Borate deposits: Proceedings – Second International Salt Syposium, Northern Ohio Geological Society, Cleveland Ohio, May 3–5, 1965, v. 1, p. 151–159.Google Scholar
  165. Mumpton, F. A., 1983, Commercial utilization of natural zeolites, in S. J. LeFond, ed., Industrial Minerals and Rocks: New York, American Institute of Mining, Metallurgical and Petroleum Engineers Inc., p. 1418–1431.Google Scholar
  166. Mutlu, H., S. Kadir, and A. Akbulut, 1999, Mineralogy and water chemistry of the Lake Acigol, Denizli, Turkey: Carbonates and Evaporites, v. 14, p. 191–199.Google Scholar
  167. Nakla, F. M., and S. A. Saleh, 1985, Mineralogy, Chemistry and Paragenesis of the Beida Lake Thenardite Deposit at the Wadi El-Natrun: Applied Mineralogy (Metallurgical Society of AIME), v. l, p. 1001–1013.Google Scholar
  168. Nie, Z., L. Bu, M. Zheng, and Y. Zhang, 2009, Crystallization Path of Salts from Brine in Zabuye Salt Lake, Tibet, During Isothermal Evaporation, in A. Oren, D. L. Naftz, P. Palacios, and W. A. Wurtsbaugh, eds., Natural Resources and Environmental Issues: Vol. 15, Article 1. Available at: Berkley Electronic Press, p. 197–201.
  169. Ober, J. A., 2000, Sulfur in Minerals Commodity Summaries 2000: U.S. Geological Survey, p. 164–165.Google Scholar
  170. Ober, J. A., 2011, Bromine: U.S. Geological Survey, 2010 Minerals Yearbook, (Advanced release – Sept 2011)Google Scholar
  171. Obolenskiy, A. A., S. M. Rodionov, S. Ariunbileg, G. Dejidmaa, E. G. Distanov, D. Dorjgotov, O. Gerel, Duk Hwan Hwang, F. Sun, A. Gotovsuren, S. N. Letunov, Xujun Li, W. J. Nokleberg, M. Ogasawara, Z. V. Seminsky, A. P. Smelov, V. I. Sotnikov, A. A. Spiridonov, L. V. Zorina, and Hongquan Yan, 2007, Mineral Deposit Models for Northeast Asia, in W. J. Nokleberg, L. M. Parfenov, G. Badarch, N. A. Berzin, Duk Hwan Hwang, A. I. Khanchuk, M. I. Kuzmin, A. A. Obolenskiy, M. Ogasawara, A. V. Prokopiev, S. M. Rodionov, A. P. Smelov, Hongquan Yan, and M. F. Diggles, eds., Metallogenesis and Tectonics of Northeast Asia, U.S. Geological Survey, Reston Virginia, Open-File Report 2007–1183; Chapter C.Google Scholar
  172. Oliver, J. E., 2005, Encyclopedia of World Climatology: Dordrecht, Springer, 854 p.Google Scholar
  173. Ordonez, S., and d. C. M. A. Garcia, 1988, The origin of sodium-calcium sulfate deposits of Madrid Basin (Spain): Water Resources Bulletin (Urbana), v. 24, p. 869–877.Google Scholar
  174. Orti, F., and B. Alonso, 2000, Gypsum-hydroboracite association in the Sijes Formation (Miocene, NW Argentina): implications for the genesis of Mg-bearing borates: Journal of Sedimentary Research, v. 70.Google Scholar
  175. Orti, F., I. Gundogan, and C. Helvaci, 2002, Sodium sulphate deposits of Neogene age: the Kirmir Formation, Beypazari Basin, Turkey: Sedimentary Geology, v. 146, p. 305–355.Google Scholar
  176. Owen, R. A., R. B. Owen, R. W. Renaut, J. J. Scott, B. Jones, and G. M. Ashley, 2008, Mineralogy and origin of rhizoliths on the margins of saline, alkaline Lake Bogoria, Kenya Rift Valley: Sedimentary Geology, v. 203, p. 143–163.Google Scholar
  177. Pakzad, H., and R. Ajalloeian, 2004, Geochemistry of the Gavkhoni Playa Lake Brine: Carbonates and Evaporites, v. 19, p. 67–74.Google Scholar
  178. Palmer, M. R., and C. Helvaci, 1995, The boron isotope geochemistry of the Kirka borate deposit, western Turkey: Geochimica et Cosmochimica Acta, v. 59, p. 3599–3605.Google Scholar
  179. Palmer, M. R., and C. Helvaci, 1997, The boron isotope geochemistry of the Neogene borate deposits of western Turkey: Geochimica et Cosmochimica Acta, v. 61, p. 3161–3169.Google Scholar
  180. Pawlowski, S., K. Pawlowska, and B. Kubica, 1979, Geology and genesis of the Polish sulfur deposits: Economic Geology, v. 74, p. 475–483.Google Scholar
  181. Peng, Q.-M., and M. R. Palmer, 2002, The Paleoproterozoic Mg and Mg-Fe Borate Deposits of Liaoning and Jilin Provinces, Northeast China: Economic Geology, v. 97, p. 93–108.Google Scholar
  182. Pérez-Fodich, A., M. Reich, F. Álvarez, G. T. Snyder, R. Schoenberg, G. Vargas, Y. Muramatsu, and U. Fehn, 2014, Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits: Geology, v. 42, p. 251–254.Google Scholar
  183. Perthuisot, J. P., S. Foridia, and A. Jauzein, 1972, Un modele recent de bassin cotier a sedimentation saline; la sebkha el Melah (Zarzis, Tunisie): Review Geographie Physical Geologie Dynamique, v. 14, p. 67–83.Google Scholar
  184. Pohl, W., 1989, Comparative geology of magnesite and occurrences, Monograph Series on Mineral Deposits, v. 28, Gebruder Borntraeger, Berlin-Stuttgart, p. 1–13.Google Scholar
  185. Pohl, W., 1990, Genesis of magnesite deposits – models and trends: Geologische Rundschau, v. 79, p. 291–299.Google Scholar
  186. Pollard, A. M., D. R. Brothwell, A. Aali, S. Buckley, H. Fazeli, M. H. Dehkordi, T. Holden, A. K. G. Jones, J. J. Shokouhi, R. Vatandoust, and A. S. Wilson, 2008, Below the salt: A Preliminary study of the dating and biology of five salt-preserved bodies from Zanjun Province, Iran: Iran, v. 46, p. 135–150.Google Scholar
  187. Power, I. M., S. A. Wilson, A. L. Harrison, G. M. Dipple, J. McCutcheon, G. Southam, and P. A. Kenward, 2014, A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada: Sedimentology, v. 61, p. 1701–1733.Google Scholar
  188. Pueyo, J. J., G. Chong, and M. Vega, 1998, Mineralogy and parental brine evolution in the Pedro de Valdivia nitrate deposit, Antofagasta, Chile (Spanish): Revista Geologica de Chile, v. 25, p. 3–15.Google Scholar
  189. Pueyo-Mur, J. J., and M. Inglés-Urpinell, 1987, Magnesite formation in recent playa lakes, Los Monegros, Spain, in J. D. Marshall, ed., Diagenesis of Sedimentary Sequences, Geol. Soc. Lond. Spec. Publ. v. 36, p. 119–122.Google Scholar
  190. Rahimpour-Bonab, H., and Z. Kalantarzadeh, 2005, Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran: Journal of Asian Earth Sciences, v. 25, p. 157–166.Google Scholar
  191. Rasmy, M., and S. F. Estefan, 1983, Geochemistry of saline minerals separated from Lake Qarun brine: Chemical Geology, v. 40, p. 269–277.Google Scholar
  192. Rech, J. A., J. Quade, and W. S. Hart, 2003, Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile: Geochimica et Cosmochimica Acta, v. 67, p. 575–586.Google Scholar
  193. Renaut, R. W., 1993b, Zeolitic Diagenesis of Late Quaternary Fluviolacustrine Sediments and Associated Calcrete Formation in the Lake Bogoria Basin, Kenya Rift-Valley: Sedimentology, v. 40, p. 271–301.Google Scholar
  194. Risacher, F., B. Alonso, and C. Salazar, 2003, The origin of brines and salts in Chilean salars: a hydrochemical review: Earth-Science Reviews, v. 63, p. 249–293.Google Scholar
  195. Risacher, F., and H. Alonso, 1996, Geochemistry of Salar de Atacama. 2. Water Evolution [Spanish]: Revista Geologica de Chile, v. 23, p. 123–134.Google Scholar
  196. Risacher, F., and B. Fritz, 2000, Bromine geochemistry of salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia: Chemical Geology, v. 167, p. 373–392.Google Scholar
  197. Rosell, O. L., and C. F. Orti, 1980, Presencia de analcima y observaciones diageneticas en la anhidrita basal de la cuenca potasica de Navarra (Eocene superior, Cuenca del Ebro, Espana): Lectures and communications from the First symposium on diagenesis of sediments and sedimentary rocks. Univ. Barcelona, Dep. Petrol. y Geoquim., Barcelona, Spain. Revista del Instituto de Investigaciones Geologicas de la Diputacion Provincial de Barcelona, v. 34, p. 223–235.Google Scholar
  198. Ruch, J., J. K. Warren, F. Risacher, T. R. Walter, and R. Lanari, 2012, Salt lake deformation detected from space: Earth and Planetary Science Letters, v. 331–332, p. 120–127.Google Scholar
  199. Ruckmick, J. C., B. H. Wimberly, and A. F. Edwards, 1979, Classification and genesis of biogenic sulfur deposits: Economic Geology, v. 74, p. 469–474.Google Scholar
  200. Saller, M., and M. O’Driscoll, 2000, Lithium takes charge: Industrial Minerals, v. 390 (March), p. 37–47.Google Scholar
  201. Salvany, J. M., J. Garcia-Veigas, and F. Orti, 2007, Glauberite-halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain): Sedimentology, v. 54, p. 443–467.Google Scholar
  202. Salvany, J. M., and F. Orti, 1994, Miocene glauberite deposits of Alcanadre, Ebro Basin, Spain: sedimentary and diagenetic processes, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, SEPM/Society for Sedimentary Geology Special Publication, v. 50, p. 203–215.Google Scholar
  203. Sanchez-Mejorada, P., 1986, Evaporite Deposit of Laguna del Rey: Trans. Soc. Mining Eng., AIME, v. 280, p. 1923–1927.Google Scholar
  204. Sanchez-Moral, S., S. Ordonez, M. A. G. Delcura, M. Hoyos, and J. C. Canaveras, 1998, Penecontemporaneous diagenesis in continental saline sediments – Bloeditization in Quero playa lake (La Mancha, Central Spain): Chemical Geology, v. 149, p. 189–204.Google Scholar
  205. Santini, K., T. Fastert, and R. Harris, 2006, Soda Ash, in J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski, eds., Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), p. 859–878.Google Scholar
  206. Sanz-Montero, M. E., and J. P. Rodriguez-Aranda, 2012, Magnesite formation by microbial activity: Evidence from a Miocene hypersaline lake: Sedimentary Geology, v. 263-ì264, p. 6–15.Google Scholar
  207. Schmid, I. H., 1987, Turkey’s Salda Lake: a genetic model for Australia’s newly discovered magnesite deposits: Ind. Min., v. 239, p. 19–31.Google Scholar
  208. Searl, A., and S. Rankin, 1993,A preliminary petrographic study of the Chilean nitrates: Geological Magazine, v. 130, p. 319–333.Google Scholar
  209. Sha, Z., W. Huang, X.-k. Wang, and Y.-y. Zhao, 2009, Solubility and supersaturation of lithium carbonate in Zabuye Salt Lake Brine, Tibet: Natural Resources and Environmental Issues: Vol. 15, Article 41. Available at:
  210. Sheppard, R.A., and A. J. Gude, 1968, Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, Calif.: U.S. Geol. Surv. Prof. Paper, v. 597, p. 38 p.Google Scholar
  211. Sheppard, R. A., A. J. Gude, and G. M. Elson, 1978, Bowie zeolite deposit, Cochise and Graham Counties,Arizona, in L. B. Sand, and F.A. Mumpton, eds., Natural Zeolites —Occerrence, Properties, Use, Pergamon, p. 319–328.Google Scholar
  212. Shi, T., Z. Chen, Z. Luo, S. Wang, and K. Wang, 2013, Mechanism of groundwater bursting in a deep rock salt mine region: a case study of the Anpeng trona and glauber mines, China: Environmental Earth Sciences, v. 68, p. 229–239.Google Scholar
  213. Shortland, A., L. Schachner, I. Freestone, and M. Tite, 2006, Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline: Journal of Archaeological Science, v. 33, p. 521–530.Google Scholar
  214. Shortland, A. J., 2004, Evaporites of the Wadi Natrun: Seasonal and annual variation and its implication for ancient exploration: Archaeometry, v. 46, p. 497–516.Google Scholar
  215. Siefke, J. W., 1991, The Boron Open Pit Mine at the Kramer Borate Deposit, in M. A. McKibben, ed., The Diversity of Mineral and Energy Resources of Southern California, SEG Guidebook Series, v. 12, p. 4–15.Google Scholar
  216. Smith, G. I., 1979, Subsurface stratigraphy and geochemistry of Late Quaternary evaporites, Searles Lake, California: US Geological Survey, Professional Paper, v. 1043, p. 130 pp.Google Scholar
  217. Smith, M. E., A. R. Carroll, and B. S. Singer, 2008, Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States: Geological Society of America Bulletin, v. 120, p. 54–84.Google Scholar
  218. Smith, M. E., B. Singer, and A. Carroll, 2003, Ar-40/Ar-39 geochronology of the Eocene Green River Formation,Wyoming: Geological Society of America Bulletin, v. 115, p. 549–565.Google Scholar
  219. St. Peter, C., 2006, Geological relationship between the Cocagne Subbasin and Indian Mountain Deformed Zone, Maritimes Basin, New Brunswick.: New Brunswick Department of Natural Resources; Minerals, Policy, and Planning Division, Mineral Resource Report, v. 2006–3, p. 103–183.Google Scholar
  220. Stafford, K. W., R. Nance, L. Rosales-Lagarde, and P. J. Boston, 2008a, Epigene and Hypogene Gypsum karst manifestations of the Castile formation: Eddy County, new Mexico and Culbesron County, Texas, USA: International Journal of Speleology, v. 37, p. 83–98.Google Scholar
  221. Stafford, K. W., L. Rosales-Lagarde, and P. J. Boston, 2008b, Castile evaporite karst potential map of the Gypsum Plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison., v. 70, no. 1, p. 35–46.: Journal of Cave and Karst Studies, v. 70, p. 35–46.Google Scholar
  222. Stamatakis, M. G., 1995, Occurrence and genesis of huntite-hydromagnesite assemblages, Kozani, Greece – important new white fillers and extenders: Transactions – Institution of Mining & Metallurgy, Section B, v. 104, p. 179–186.Google Scholar
  223. Stanley, D. J., and H. Sheng, 1979, Trona in Nile Cone Late Quaternary sediments: Probable redepositional origin: Marine Geology, v. 31, p. M21–M28.Google Scholar
  224. Stieljes, L., 1973, Evolution tectonique récente du rift d’Asal: Review Geographie Physical Geologie Dynamique, v. 15, p. 425–436.Google Scholar
  225. Strakhov, N. M., 1970, Principles of Lithogenesis (Reviews of USSR Sodium Sulfate Deposits): NewYork, Plenum Publishing.Google Scholar
  226. Strecker, M. R., R. N. Alonso, B. Bookhagen, B. Carrapa, G. E. Hilley, E. R. Sobel, and M. H. Trauth, 2007, Tectonics and climate of the southern central Andes, Annual Review of Earth and Planetary Sciences, p. 747–787.Google Scholar
  227. Suner, F., O. I. Ece, F. Coban, and F. Esenli, 2003, Occurrence and properties of natron in the Miocene lacustrine Beypazari basin, Turkey: Neues Jahrbuch Fur Mineralogie-Monatshefte, p. 31–48.Google Scholar
  228. Surdam, R. C., 1981, Zeolites in closed hydrologic systems, in F. A. Mumpton, ed., Mineralogy and Geology of Natural Zeolites, Mineralogical Society of America Reviews in Mineralogy, v. 4, p. 65–91.Google Scholar
  229. Surdam, R. C., and H. P. Eugster, 1976, Mineral reactions in sedimentary deposits of Lake Magadi region, Kenya: Geological Society of America Bulletin, v. 87, p. 1739–1752.Google Scholar
  230. Surdam, R. C., and R. A. Sheppard, 1978, Zeolites in saline alkaline lake deposits, in L. B. Sand, and F. A. Mumpton, eds., Natural Zeolites: Occurrence, properties, use: New York, Pergamon, p. 145–174.Google Scholar
  231. Surdam, R. C., and C. A. Wolfbauer, 1975, Green River Formation, Wyoming: a playa lake complex: Geological Society of America Bulletin, v. 86, p. 335–345.Google Scholar
  232. Swihart, G. H., P. B. Moore, and E. L. Callis, 1986, Boron isotopic composition of marine and nonmarine evaporite borates: Geochimica et Cosmochimica Acta, v. 50, p. 1297–1301.Google Scholar
  233. Tadesse, S., J.-P. Milesi, and Y. Deschamps, 2003, Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia: Journal of African Earth Sciences, v. 36, p.Google Scholar
  234. Tanavsuu-Milkeviciene, K., and J. Frederick Sarg, 2012, Evolution of an organic-rich lake basin – stratigraphy, climate and tectonics: Piceance Creek basin, Eocene Green River Formation: Sedimentology, v. 59, p. 1735–1768.Google Scholar
  235. Tanner, L. H., 2002, Borate formation in a perennial lacustrine setting: Miocene-Pliocene Furnace Creek Formation, DeathValley, California, USA: Sedimentary Geology, v. 148, p. 259–273.Google Scholar
  236. Thode, H. G., and J. Monster, 1973, Sulfur-isotope geochemistry of petroleum, evaporites, and ancient seas [with comment], in D. W. Kirkland, ed., Marine Evaporites; Origin, Diagenesis, and Geochemistry, Dowden, Hutchinson and Ross.Google Scholar
  237. Torii, T., and J. Ossaka, 1965, A new mineral, calcium chloride hexahydrate, discovered in Antarctica: Science, v. 149, p. 975–977.Google Scholar
  238. Trauth, M. H., A. Deino, and M. R. Strecker, 2001, Response of the East African climate to orbital forcing during the last interglacial (130–117 ka) and the early last glacial (117–60 ka): Geology, v. 29, p. 499–502.Google Scholar
  239. Turner, C. E., and N. S. Fishman, 1991, Jurassic Lake T’oo’dichi’: A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau: Geological Society of America Bulletin, v. 103, p. 538–558.Google Scholar
  240. Vandervoort, D. S., 1997, Stratigraphic response to saline lake-level fluctuations and the origin of cyclic nonmarine evaporite deposits – The Pleistocene Blanca Lila Formation, Northwest Argentina: Geological Society of America Bulletin, v. 109, p. 210–224.Google Scholar
  241. Vengosh, A., A. R. Chivas, A. Starinsky, Y. Kolodny, B. Zhang, and P. Zhang, 1995, Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China: Chemical Geology, v. 120, p. 135–154.Google Scholar
  242. Vinante, D., and R. N. Alonso, 2006, Evapofacies del Salar Hombre Muerto, Puna argentina: distribucion y genesis: Rev. Asoc. Geol. Argent., v. 61, p. 286–297.Google Scholar
  243. Vitra, R. L., 2014, Zeolites (Natural): USGS Mineral commodity summaries.Available for download as pdf files at
  244. Volkova, N. I., 1998, Geochemistry of rare elements in waters and sediments of alkaline lakes in the Sasykkul’ depressions, East Pamirs: Chemical Geology, v. 147, p. 265–277.Google Scholar
  245. Wallick, E. I., 1981, Chemical evolution of groundwater in a drainage basin of Holocene age, east central Alberta: Journal of Hydrology, v. 54, p. 245–283.Google Scholar
  246. Wang, J., 1987, A preliminary study of the characteristics and conditions for forming the Anpeng Trona deposit: Petrol Explor. Develop, v. 5, p. 93–99.Google Scholar
  247. Wang, S. L., S. C. Brassell, S. C. Scarpitta, M. P. Zheng, S. C. Zhang, P. R. Hayde, and L. M. Muench, 2004, Steroids in sediments from Zabuye Salt Lake, western Tibet: diagenetic, ecological or climatic signals?: Organic Geochemistry, v. 35, p. 157–168.Google Scholar
  248. Wardlaw, N. C., 1972, Unusual marine evaporites with salts of calcium and magnesium chloride in Cretaceous basins of Sergipe, Brazil: Economic Geology, v. 67, p. 156–168.Google Scholar
  249. Warren, J. K., 1990, Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia: Journal of Sedimentary Petrology, v. 60, p. 843–858.Google Scholar
  250. Warren, J. K., 2008, Salt as sediment in the Central European Basin system as seen from a deep time perspective (Chapter 5.1), in R. Littke, ed., Dynamics of complex intracontinental basins: The Central European Basin System, Elsevier, p. 249–276.Google Scholar
  251. Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.Google Scholar
  252. Webb, T. C., 1977, Geology of the New Brunswick Glauberite Deposit: New Brunswick Dept. Natural Resources, Open File Rept. 77–15. 26pp.Google Scholar
  253. Wiig, S. V., W. D. Grundy, and J. R. Dyni, 1995, Trona resources in the Green River Basin, southwest Wyoming, U.S. Geological Survey Open-File Report 95–476, 88 p.Google Scholar
  254. Wilburn, D. R., T. Goonan, and D. Bleiwas, 2001, Technological Advancement -- A Factor in Increasing Resource Use: U.S. Geological Survey Open-File Report 01–197 (Version 1.03 Online Only – last updated 2005) accessed at on April 29, 2012.
  255. Williamson, B. M., 1987, Formation of authigenic silicate minerals in Miocene volcaniclastic rocks, Boron, California: Master of Science thesis, University of California, Santa Barbara.Google Scholar
  256. Wood, W. W., W. E. Sanford, and S. K. Frape, 2005, Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat: Chemical Geology, v. 215, p. 361–372.Google Scholar
  257. Worden, R. H., 1996, Controls on halogen concentrations in sedimentary formation waters: Mineralogical Magazine, v. 60, p. 259–274.Google Scholar
  258. Wünnemann, B., K. Hartmann, M. Janssen, and C. Zhang Hucai, 2007, Responses of Chinese desert lakes to climate instability during the past 45,000 years, Developments in Quaternary Science, v. Volume 9, Elsevier, p. 11–24.Google Scholar
  259. Xiyu, Z., 1984, Distribution characteristics of boron and lithium in brine of Zhacang Caka salt lake, Xizang (Tibet), China: Chinese Journal of Oceanology and Limnology, v. 2, p. 218–227.Google Scholar
  260. Youssef, E. A. A., 1989, Geology and genesis of sulfur deposits at Ras Gemsa area, Red Sea coast, Egypt: Geology, v. 17, p. 797–801.Google Scholar
  261. Youxun, Z., 1985, Geology of the Wucheng trona deposit in Henan, China: Schreiber, B. C., Warner, H. L. Sixth International Symposium on Salt, May 24–28, 1983, Toronto, Canada, Salt Institute, Alexandria, VA, v. 1, p. 67–73.Google Scholar
  262. Yu, G., S. P. Harrison, and B. Xue, 2001, Lake status records from China: Data Base Documentation: MPI-BGC Technology Report, v. 4, p. 46–49.Google Scholar
  263. Yu, J., C. Gao, A. Cheng, Y. Liu, L. Zhang, and X. He, 2013, Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China: Ore Geology Reviews, v. 50, p. 171–183.Google Scholar
  264. Zampirro, D., 2004, Hydrology of the Clayton Valley brine deposits, Esmeralda County: Proceedings of the 39th Forum on the Geology of Industrial Minerals, Reno, Geological Society of Nevada, p. 271–280.Google Scholar
  265. Zavialov, P., A. Ni, T. Kudyshkin, D. Ishniyazov, I. Tomashevskaya, and D. Mukhamedzhanova, 2009, Ongoing Changes of Ionic Composition and Dissolved Gases in the Aral Sea: Aquatic Geochemistry, v. 15, p. 263–275.Google Scholar
  266. Zhang, C., 1998, The natural soda deposits of China, in J. R. Dyni, and R. W. Jones, eds., Proceedings of the First International Soda Ash Conference; Volume II, v. 40, Wyoming State Geological Survey Public Information Circular, p. 57–66.Google Scholar
  267. Zheng, M., 1997, An introduction to saline lakes on the Qinghai-Tibet, Plateau: Monographiae Biologicae, v. 76, Springer, 328 p.Google Scholar
  268. Zheng, M., and X. Liu, 2009, Hydrochemistry of Salt Lakes of the Qinghai-Tibet Plateau, China: Aquatic Geochemistry, v. 15, p. 293–320.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • John K. Warren
    • 1
  1. 1.Department of GeologyChulalongkorn UniversityBangkokThailand

Personalised recommendations