How Semantic Processing of Words Evokes Changes in Pupil

  • Patrik Pluchino
  • Luciano Gamberini
  • Oswald Barral
  • Filippo Minelle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8820)

Abstract

This paper investigates the relationship between semantic processing of words and modifications in pupil size. Variations in pupil diameter reflect cognitive processing, as has been widely demonstrated in literature. We designed an experiment in which semantic association between words was manipulated in order to disclose potential differences in cognitive processing. Moreover, we measured the concurrent pupil diameter changes. Results showed faster pupil dilation in trials in which words were semantically associated. As changes in pupil diameter do not occur under voluntary control, they could reflect processing of preconscious information. We believe that a better symbiotic relationship between humans and machines is achievable once systems are able to make us aware of these “involuntary” changes.

Keywords

Pupil diameter Semantic association Symbiotic relationship 

References

  1. 1.
    Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91(2), 276 (1982)CrossRefGoogle Scholar
  2. 2.
    Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli. Science 132(3423), 349–350 (1960)CrossRefGoogle Scholar
  3. 3.
    Aboyoun, D.C., Dabbs, J.M.: The Hess pupil dilation findings: sex or novelty? Soc. Behav. Pers. Int. J. 26(4), 415–419 (1998)CrossRefGoogle Scholar
  4. 4.
    Vȯ, M.L.H., Jacobs, A.M., Kuchinke, L., Hofmann, M., Conrad, M., Schacht, A., Hutzler, F.: The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology 45, 130–140 (2008)CrossRefGoogle Scholar
  5. 5.
    Kang, M.J., Hsu, M., Krajbich, I.M., Loewenstein, G., McClure, S.M., Wang, J.T.Y., Camerer, C.F.: The wick in the candle of learning epistemic curiosity activates reward circuitry and enhances memory. Psychol. Sci. 20(8), 963–973 (2009)CrossRefGoogle Scholar
  6. 6.
    Beatty, J., Kahneman, D.: Pupillary changes in two memory tasks. Psychon. Sci. 5(10), 371–372 (1966)CrossRefGoogle Scholar
  7. 7.
    Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task-evoked pupillary response to mental workload in human-computer interaction. In: CHI’04 Extended Abstracts on Human Factors in Computing Systems, pp. 1477–1480. ACM, April 2004Google Scholar
  8. 8.
    Van Orden, K.F., Jung, T.P., Makeig, S.: Combined eye activity measures accurately estimate changes in sustained visual task performance. Biol. Psychol. 52(3), 221–240 (2000)CrossRefGoogle Scholar
  9. 9.
    Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem-solving. Science 143(3611), 1190–1192 (1964)CrossRefGoogle Scholar
  10. 10.
    Ahern, S., Beatty, J.: Pupillary responses during information processing vary with Scholastic Aptitude Test scores. Science 205, 1289–1292 (1979)CrossRefGoogle Scholar
  11. 11.
    Hyönä, J., Tommola, J., Alaja, A.M.: Pupil dilation as a measure of processing load in simultaneous interpretation and other language tasks. Q. J. Exp. Psychol. 48(3), 598–612 (1995)CrossRefGoogle Scholar
  12. 12.
    Just, M.A., Carpenter, P.A.: The intensity dimension of thought: pupillometric indices of sentence processing. Can. J. Exp. Psychol./Rev. canadienne de psychologie expérimentale 47(2), 310 (1993)CrossRefGoogle Scholar
  13. 13.
    Kahneman, D., Beatty, J.: Pupil diameter and load on memory. Science 154(3756), 1583–1585 (1966)CrossRefGoogle Scholar
  14. 14.
    Porter, G., Troscianko, T., Gilchrist, I.D.: Effort during visual search and counting: insights from pupillometry. Q. J. Exp. Psychol. 60, 211–229 (2007)CrossRefGoogle Scholar
  15. 15.
    Van Gerven, P.W., Paas, F., Van Merriënboer, J.J., Schmidt, H.G.: Memory load and the cognitive pupillary response in aging. Psychophysiology 41(2), 167–174 (2004)CrossRefGoogle Scholar
  16. 16.
    Janisse, M.P., Bradley, M.T.: Deception information and the pupillary response. Percept. Mot. Skills 50(3), 748–750 (1980)CrossRefGoogle Scholar
  17. 17.
    Lubow, R.E., Fein, O.: Pupillary size in response to a visual guilty knowledge test: New Technique for detection of deception. J. Exp. Psychol. Appl. 2(2), 164–177 (1996)CrossRefGoogle Scholar
  18. 18.
    Dionisio, D.P., Granholm, E., Hillix, W.A., Perrine, W.F.: Differentiation of deception using pupillary responses as an index of cognitive processing. Psychophysiology 38(2), 205–211 (2001)CrossRefGoogle Scholar
  19. 19.
    Jacucci, G., Spagnolli, A., Freeman, J., Gamberini, L.: Symbiotic interaction: a critical definition and comparison to other human-computer paradigms. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 3–20. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Licklider, J.C.R.: Man-computer symbiosis. Hum. Factors Electron. IRE Trans. 1, 4–11 (1960)CrossRefGoogle Scholar
  21. 21.
    Spagnolli, A., Guardigli, E., Orso, V., Varotto, A., Gamberini, L.: Measuring user acceptance of wearable symbiotic devices: validation study across application scenarios. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 87–98. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Negri, P, Gamberini, L, Cutini, S.: A Review of the Research on Subliminal Techniques for Implicit Interaction in Symbiotic Systems. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 47–60. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Barral, O., Aranyi, G., Kouider, S., Lindsay, A., Prins, H., Ahmed, I., Jacucci, G., Negri, P., Gamberini, L., Pizzi, D., Cavazza, M.: Covert persuasive technologies: bringing subliminal cues to human-computer interaction. In: Persuasive Technology, pp. 1–12. Springer International Publishing (2014)Google Scholar
  24. 24.
    Aranyi, G., Kouider, S., Lindsay, A., Prins, H., Ahmed, I., Jacucci, G., Negri, P., Gamberini, L., Pizzi, D., Cavazza, M.: Subliminal cueing of selection behavior in a virtual environment. Presence: Teleoperators Virtual Environ. 23(1), 33–50 (2014)CrossRefGoogle Scholar
  25. 25.
    Beatty, J., Lucero-Wagoner, B.: The pupillary system. Handb. Psychophysiol. 2, 142–162 (2000)Google Scholar
  26. 26.
    Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press, Oxford (2011)Google Scholar
  27. 27.
    Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry a window to the preconscious? Perspect. Psychol. Sci. 7(1), 18–27 (2012)CrossRefGoogle Scholar
  28. 28.
    Whipple, B., Ogden, G., Komisaruk, B.R.: Physiological correlates of imagery-induced orgasm in women. Arch. Sex. Behav. 21(2), 121–133 (1992)CrossRefGoogle Scholar
  29. 29.
    Loewenfeld, I.: The Pupil: Anatomy, Physiology, and Clinical Applications. Detroit MI Wayne State University Press, Detroit (1993)Google Scholar
  30. 30.
    Hutchison, K.A., Balota, D.A., Neely, J.H., Cortese, M.J., Cohen-Shikora, E.R., Tse, C.S., Yap, M.J., Bengson, J.J., Niemeyer, D., Buchanan, E.: The semantic priming project. Behav. Res. Methods 45(4), 1099–1114 (2013)CrossRefGoogle Scholar
  31. 31.
    Kahneman, D.: Attention and Effort. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  32. 32.
    Luck, S.J., Hillyard, S.A.: Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31(3), 291–308 (1994)CrossRefGoogle Scholar
  33. 33.
    Woodman, G.F., Luck, S.J.: Dissociations among attention, perception, and awareness during object-substitution masking. Psychol. Sci. 14(6), 605–611 (2003)CrossRefGoogle Scholar
  34. 34.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, pp. 1–6. Cambridge University Press, Cambridge (2008)Google Scholar
  35. 35.
    Athukorala, K., Hoggan, E., Lehti, A., Ruotsalo, T., Jacucci, G.: Informationseeking behaviors of computer scientists: challenges for electronic literature search tools. Proc. Am. Soc. Inf. Sci. Technol. 50(1), 1–11 (2013)CrossRefGoogle Scholar
  36. 36.
    Oliveira, F.T., Aula, A., Russell, D.M.: Discriminating the relevance of web search results with measures of pupil size. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2209–2212. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patrik Pluchino
    • 1
  • Luciano Gamberini
    • 1
  • Oswald Barral
    • 2
  • Filippo Minelle
    • 1
  1. 1.Human Inspired Technology Research Centre (HIT)University of PadovaPaduaItaly
  2. 2.Helsinki Institute for Information Technology (HIIT), Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations