Navigating Complex Information Spaces: A Portfolio Theory Approach

  • Payel Bandyopadhyay
  • Tuukka Ruotsalo
  • Antti Ukkonen
  • Giulio Jacucci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8820)

Abstract

Users often find difficult to navigate through a large information space to find the required information. One of the reasons is the difficulty in designing systems that would present the user with an optimal set of navigation options to support varying information needs. As a solution, this paper proposes a method referred as interaction portfolio theory. This theory is inspired by the economic theory called the “Modern Portfolio theory”, which offers users with optimal interaction options by taking into account user’s goal expressed via interaction during the task, but also the risk related to a potentially suboptimal choice made by the user. The proposed method learns the relevant interaction options from user behavior interactively and optimizes relevance and diversity to allow the user to accomplish the task in a shorter interaction sequence. This theory can be applied to any IR system to help users to retrieve the required information easily.

Keywords

Information retrieval Information retrieval systems Modern portfolio theory Search behaviour Evaluation 

References

  1. 1.
    Belkin, N.: Some(what) grand challenges for information retrieval. SIGIR Forum 42(1), 47–54 (2008). http://doi.acm.org/10.1145/1394251.1394261 CrossRefGoogle Scholar
  2. 2.
    Athukorala, K., Oulasvirta, A., Gowacka, D., Vreeken, J., Jacucci, G.: Narrow or broad? estimating subjective specificity in exploratory search. In: Proceedings of CIKM 2014. ACM (2014)Google Scholar
  3. 3.
    Athukorala, K., Hoggan, E., Lehti, A., Ruotsalo, T., Jacucci, G.: Information seeking behaviors of computer scientists: challenges for electronic literature search tools. Proc. Am. Soc. Inf. Sci. Technol. 50(1), 1–11 (2013)CrossRefGoogle Scholar
  4. 4.
    Jacucci, G., Spagnolli, A., Freeman, J., Gamberini, L.: Symbiotic interaction: a critical definition and comparison to other human-computer paradigms. In: Jacucci, G., et al. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 3–20. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Ruotsalo, T., Peltonen, J., Eugster, Manuel J.A. Gowacka, D, Konyushkova, K., Athukorala, K., Kosunen, I., Reijonen, A, Myllymki, P., Jacucci, G., Kaski, S.: Directing exploratory search with interactive intent modeling. In: ACM International Conference on Information and Knowledge Management (2013)Google Scholar
  6. 6.
    Glowacka, D., Ruotsalo, T., Konuyshkova, K., Kaski, S., Jacucci, G.: Directing exploratory search: reinforcement learning from user interactions with keywords. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 117–128. ACM (2013)Google Scholar
  7. 7.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRefGoogle Scholar
  8. 8.
    Bowman, M., Danzig, B., Manber, U., Schwartz, F.: Scalable Internet resource discovery: research problems and approaches. Commun. ACM-Assoc. Comput. Mach. - CACM 37(8), 98–107 (1994)Google Scholar
  9. 9.
    Marchionini, G.: Interfaces for end-user information seeking. J. Am. Soc. Inf. Sci. 43, 156–163 (1992)CrossRefGoogle Scholar
  10. 10.
    Carpineto, C., Romano, G.: Information retrieval through hybrid navigation of lattice representations. Int. J. Hum.-Comput. Stud. 45(5), 553–578 (1996). http://dx.doi.org/10.1006/ijhc.1996.0067 CrossRefGoogle Scholar
  11. 11.
    Marchionini, G., Shneiderman, B.: Finding facts vs. browsing, knowledge in hypertext systems. Computer 21(1), 70–80 (1988). http://dx.doi.org/10.1109/2.222119 CrossRefGoogle Scholar
  12. 12.
    Burke, R., Hammond, K., Young, B.: Knowledge-based navigation of complex information spaces. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, vol. 1, pp. 462–468 (1996)Google Scholar
  13. 13.
    Elm, W., Woods, D.: Getting lost: a case study in interface design. In: Proceedings of the Human Factors Society 29th Annual Meeting, pp. 927–931 (1985)Google Scholar
  14. 14.
    Markowitz, H.: Portfolio selection. J. Finan. 7(1), 77–91 (1952)Google Scholar
  15. 15.
    Hearst, M., Pedersen, J.: Reexamining the cluster hypothesis: scatter/gather on retrieval results. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 76–84. ACM, New York (1996). http://doi.acm.org/10.1145/243199.243216
  16. 16.
    Dee-Lucas, D., Larkin, L.: Learning from electronic texts: effects of interactive overviews for information access. Cogn. Instr. 13(43), 431–468 (1995)CrossRefGoogle Scholar
  17. 17.
    Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Mach. Learn. 24, 95–122 (1996)Google Scholar
  18. 18.
    Maarek, S., Berry, M., Kaiser, E.: An information retrieval approach for automatically constructing software libraries. IEEE Trans. Softw. Eng. 17(8), 800–813 (1991). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=83915&isnumber=2739
  19. 19.
    Brusilovsky, P.: User modeling and user-adapted interaction. Adapt. Hypermedia 11, 87–110 (2001). Kluwer Academic PublishersMATHGoogle Scholar
  20. 20.
    Brusilovsky, P.: Adaptive educational systems on the World-Wide-Web: a review of available technologies. In: Proceedings of Workshop WWW-Based Tutoring at 4th International Conference on Intelligent Tutoring Systems (ITS’98), San Antonio, USA, 16–19 August 1998Google Scholar
  21. 21.
    Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: a tour guide for the World Wide Web. In: Proceedings of 15th International Joint Conference on Artificial Intelligence, pp. 770–775 (1997)Google Scholar
  22. 22.
    Pazzani, M., Muramatsu, J., Billsus, D.: Syskill and webert: identifying interesting web sites. In: Proceedings of the Thirteen National Conference on Artificial Intelligence, Portland, pp. 54–61 (1996). http://www.ics.uci.edu/pazzani/Syskill.html
  23. 23.
    Kaplan, C., Fenwick, J., Chen, J.: Adaptive hypertext navigation based on user goals and context. User Model User-Adapt. Interact. 3(3), 193–220 (1993)CrossRefGoogle Scholar
  24. 24.
    Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–122. ACM, New York (2009). http://doi.acm.org/10.1145/1571941.1571963

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Payel Bandyopadhyay
    • 1
  • Tuukka Ruotsalo
    • 2
  • Antti Ukkonen
    • 2
  • Giulio Jacucci
    • 1
  1. 1.Department of Computer Science, Helsinki Institute for Information Technology HIITUniversity of HelsinkiHelsinkiFinland
  2. 2.Helsinki Institute for Information Technology HIITAalto UniversityEspooFinland

Personalised recommendations