Trophic Relationships of Limnoperna fortunei with Larval Fishes

  • Esteban M. PaolucciEmail author
  • Erik V. Thuesen
Part of the Invading Nature - Springer Series in Invasion Ecology book series (INNA, volume 10)


This chapter reviews investigations concerning the importance of veligers of the exotic bivalve Limnoperna fortunei in the diets of larval fish in the Río de la Plata basin. These studies have shown that of the 25 fish taxa studied, 18 consumed veligers of L. fortunei. These species included the most abundant members of Characiformes and Siluriformes. The relative frequency and biomass contribution of L. fortunei larvae differed strongly in pimelodid and Prochilodus lineatus larvae at different developmental stages and in different environments. Thus, as fish larvae grew, their diets shifted from veligers to other prey items. The fact that the earliest fish larvae are the most active consumers of veligers is particularly significant because these early larvae usually represent the most vulnerable life stage when mortality rates are the highest. In addition, field data and laboratory experiments indicate that small crustaceans have been largely replaced by L. fortunei veligers in diets of fish larvae, especially when veligers are abundant. Selectivity for feeding on veligers was recorded in the field and in laboratory experiments by manipulating prey density. Experiments also demonstrated that P. lineatus larvae grew to a significantly larger size with a high concentration of veligers in the diet. This new and abundant food resource appears to have a very important impact on the survival and growth of P. lineatus and probably other fish species as well.


Limnoperna fortunei Golden mussel Predation by fish Ecological impact Trophic interactions Fish diet Fish larvae Veligers 


  1. Banard C, Martineau C, Frenette JJ, Dodson JJ, Vincent WF (2006) Trophic position of zebra mussel veligers and their use of dissolved organic carbon. Limnol Oceanogr 51:1473–1484CrossRefGoogle Scholar
  2. Blaber SJM (1979) The biology of filter feeding teleosts in Lake St Lucia, Zululand. J Fish Biol 15:37–59CrossRefGoogle Scholar
  3. Boltovskoy D, Correa N (2015) Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America 746:81–95Google Scholar
  4. Boltovskoy D, Sylvester F, Otaegui A, Leytes V, Cataldo D (2009) Environmental modulation of the reproductive activity of the invasive mussel Limnoperna fortunei in South America. Austral Ecol 34:719–730CrossRefGoogle Scholar
  5. Bonetto AA (1998) Panorama sinóptico sobre la ictiofauna, la pesca y la piscicultura en los ríos de la cuenca del Plata con especial referencia al Paraná. Revista de Ictiología 6:3–15Google Scholar
  6. Bulté G, Blouin-Demers G (2008) Northern map turtles (Graptemys geographica) derive energy from the pelagic pathway through predation on zebra mussels (Dreissena polymorpha). Freshw Biol 53:497–508CrossRefGoogle Scholar
  7. Carolsfield J, Harvey B, Ross C, Baer A (2004) Migratory fish of South America: biology, fisheries and conservation status. World Bank, Victoria, pp 1–380Google Scholar
  8. Clarke LR, Letizia PS, Bennett DH (2004) Autumn-to-Spring energetic and diet changes among Kokanee from North Idaho lakes with and without Mysis relicta. N Am J Fish Manag 24:597–608CrossRefGoogle Scholar
  9. Cooper SD, Goldman CR (1980) Opossum shrimp (Mysis relicta) predation on zooplankton. Can J Fish Aquat Sci 37:909–919CrossRefGoogle Scholar
  10. Deudero S, Morales-Nin B (2001) Prey selectivity in planktivorous juvenile fishes associated with floating objects in the western Mediterranean. Aquac Res 32:481–490CrossRefGoogle Scholar
  11. Elliott JM, Persson L (1978) The estimation of daily rates of food consumption for fish. J Animal Ecol 47:977–991CrossRefGoogle Scholar
  12. Espinach Ros A, Fuentes CM (2001) Recursos pesqueros y pesquerías de la Cuenca del Plata. In: Bezzi S, Akselman R, Boschi EE (eds) Síntesis del estado de las pesquerías marítimas argentinas y de la Cuenca del Plata. Años 1997–1998. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, pp 353–358Google Scholar
  13. French JRP, Bur MT (1996) The effect of zebra mussel consumption on growth of freshwater drum in Lage Erie. J Freshw Ecol 11:283–289CrossRefGoogle Scholar
  14. Fuentes CM, Espinach Ros A (1998) Variación de la actividad reproductiva del sábalo, Prochilodus lineatus (Valenciennes, 1847), estimada por el flujo de larvas en el rıo Paraná Inferior. Nat Neotrop 29:25–32Google Scholar
  15. Fulford RS, Rice JA, Miller TJ, Binkowski FP, Dettmers JM, Belonger B (2006) Foraging selectivity by larval yellow perch (Perca flavescens): implications for understanding recruitment in small and large lakes. Can J Fish Aquat Sci 63:28–42CrossRefGoogle Scholar
  16. García-Ortega A, Verreth J, Vermis K, Nelis HJ, Sorgeloos P, Verstegen M (2010) Laboratory investigation of daily food intake and gut evacuation in larvae of African catfish Clarias gariepinus under different feeding conditions. Aquac Int 18:119–134CrossRefGoogle Scholar
  17. Graeb BDS, Dettmers JM, Wahl DH, Cáceres CE (2004) Fish size and prey availability affect growth, survival, prey selection, and foraging behavior of larval yellow perch. Transactions Am Fish Soc 133:504–514CrossRefGoogle Scholar
  18. Halver JE (2001) My 50 years in fish nutrition, 1949–99. Aquac Res 32:615–622CrossRefGoogle Scholar
  19. Karatayev AY, Boltovskoy D, Padilla DK, Burlakova LE (2007a) The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. J Shellfish Res 26:205–213CrossRefGoogle Scholar
  20. Karatayev AY, Padilla DK, Minchin D, Boltovskoy D, Burlakova LE (2007b) Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biol Invasions 9:161–180CrossRefGoogle Scholar
  21. Lankford TE, Targett TE (1997) Selective predation by juvenile weakfish: post-consumptive constraints on energy maximization and growth. Ecology 78:1049–1061CrossRefGoogle Scholar
  22. Lazo J (2000) Conocimiento actual y nuevas perspectivas en el desarrollo de dietas para larvas de peces marinos. In: Avances en Nutrición Acuícola. V Simposium Internacional de Nutrición Acuícola, Mérida (Venezuela)Google Scholar
  23. Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167CrossRefGoogle Scholar
  24. Lehtiniemi M, Hakala T, Saesmaa S, Viitasalo M (2007) Prey selection by the larvae of three species of littoral fishes on natural zooplankton assemblages. Aquat Ecol 41:85–94CrossRefGoogle Scholar
  25. MacIsaac HJ, Grigorovich IA, Hoyle JA, Yan ND, Panov VE (1999) Invasion of Lake Ontario by the Ponto–Caspian predatory cladoceran Cercopagis pengoi. Can J Fish Aquat Sci 56:1–5Google Scholar
  26. Magoulick DD, Lewis LC (2002) Predation on exotic zebra mussels by native fishes: effects on predator and prey. Freshw Biol 47:1908–1918CrossRefGoogle Scholar
  27. Makrakis MC, Nakatani K, Bialetzki A, Gomes LC, Sanches PV, Baumgartner G (2008) Relationship between gape size and feeding selectivity of fish larvae from a neotropical reservoir. J Fish Biol 72:1690–1707CrossRefGoogle Scholar
  28. Merigoux S, Ponton D (1998) Body shape, diet and ontogenetic diet shifts in young fish of the Sinnamary River, French Guiana, South America. J Fish Biol 52:556–569Google Scholar
  29. Molloy DP, Karatayev AY, Burlakova EB, Kurandina DP, Laruelle F (1997) Natural enemies of zebra mussels: predators, parasites, and ecological competitors. Rev Fish Sci 5:27–97CrossRefGoogle Scholar
  30. Nagelkerke LAJ, Sibbing FA (1996) Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilulus): the effects of morphology and behavior. Can J Fish Aquat Sci 53:2847–2861CrossRefGoogle Scholar
  31. Paolucci EM (2002) Actividad reproductiva del sábalo Prochilodus lineatus (Valenciennes, 1847) y otras especies de interés comercial y deportivo en el río Uruguay inferior, estimada por la abundancia de estadios larvales en la deriva. MSc Thesis, Universidad de Buenos Aires (Argentina), pp 1–74Google Scholar
  32. Paolucci EM (2010) Impacto del molusco invasor Limnoperna fortunei sobre el ecosistema: interacción trófica y efectos sobre las larvas de peces nativos. PhD Thesis, Universidad de Buenos Aires (Argentina), pp 1–162Google Scholar
  33. Paolucci EM, Cataldo DH, Fuentes CM, Boltovskoy D (2007) Larvae of the invasive species Limnoperna fortunei (Bivalvia) in the diet of fish larvae in the Paraná River, Argentina. Hydrobiologia 589:219–233CrossRefGoogle Scholar
  34. Paolucci EM, Cataldo DH, Boltovskoy D (2010a) Prey selection by larvae of Prochilodus lineatus (Pisces): indigenous zooplankton versus larvae of the introduced bivalve Limnoperna fortunei. Aquat Ecol 44:255–267CrossRefGoogle Scholar
  35. Paolucci EM, Thuesen EV, Cataldo DH, Boltovskoy D (2010b) Veligers of an introduced bivalve (Limnoperna fortunei) are a new food resource that enhances growth of larval fish in the Paraná River (South America). Freshw Biol 55:1831–1844CrossRefGoogle Scholar
  36. Paolucci EM, Almada P, Cataldo D, Boltovskoy D (2015) Native fish larvae take advantage of introduced mussel larvae: field evidence of feeding preferences on veligers of the introduced freshwater bivalve Limnoperna fortunei. Hydrobiologia 745:211–224Google Scholar
  37. Pepin P, Penney RW (1997) Patterns of prey size and taxonomic composition in larval fish: are there general size-dependent models? J Fish Biol 51:84–100CrossRefGoogle Scholar
  38. Rønnestad I, Kamisaka Y, Conceição LEC, Morais S, Tonheim SK (2007) Digestive physiology of marine fish larvae: hormonal control and processing capacity for proteins, peptides and amino acids. Aquaculture 268:82–97CrossRefGoogle Scholar
  39. Rossi LM (1992) Evolucion morfológica del aparato digestivo de postlarvas y prejuveniles de Prochilodus lineatus (Val., 1847) (Pisces, Curimatidae) y su relacion con la dieta. Revue d’Hydrobiologie Tropicale 25:159–107Google Scholar
  40. Rossi LM (2001) Ontogenetic diet shifts in a neotropical catfish, Sorubim lima (Schneider) from the River Paraná System. Fish Manag Ecol 8:141–152CrossRefGoogle Scholar
  41. Rossi LM (2008) Ecologia trófica de peces de importancia económica del Río Parana durante su ontogenia temprana. PhD Thesis, Universidad Nacional de La Plata (Argentina), pp 1–174Google Scholar
  42. Rossi L, Cordiviola E, Parma MJ (2007) Fishes. In: Iriondo MH, Paggi JC, Parma MJ (eds) The middle Parana River. Limnology of a subtropical wetland. Springer, Berlin, pp 305–325CrossRefGoogle Scholar
  43. Sargent J, Bell G, McEvoy L, Tocher D, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199CrossRefGoogle Scholar
  44. Strecker AL, Arnott SE (2008) Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11:490–503CrossRefGoogle Scholar
  45. Sverlij SB, Espinach Ros A, Orti G (1993) Sinopsis de los datos biológicos y pesqueros del sábalo Prochilodus lineatus (Valenciennes, 1847). Food and Agriculture Organization, Rome, pp 1–64Google Scholar
  46. Sylvester F, Boltovskoy D, Cataldo D (2007) Fast response of freshwater consumers to a new trophic resource: Predation on the recently introduced Asian bivalve Limnoperna fortunei in the lower Parana River, South America. Austral Ecology 32:403–415CrossRefGoogle Scholar
  47. Teshima SI, Koshio S, Ishikawa M, Alam MS, Hernandez LHH (2004) Effects of protein and lipid sources on the growth and survival of red sea bream Pagrus major and Japanese flounder Paralichthys olivaceus receiving micro-bound diets during larval and early juvenile stage. Aquac Nutr 10:279–287CrossRefGoogle Scholar
  48. Vanderploeg HA, Bowers JA, Chapelski O, Soo HK (1982) Measuring in situ predation by Mysis relicta and observations on underdispersed microdistributions of zooplankton. Hydrobiologia 93:109–119CrossRefGoogle Scholar
  49. Welcomme RL (1979) Fisheries ecology of floodplain rivers. Longman, London, pp 1–317Google Scholar
  50. Werner EE (1974) The fish size, prey size, handling time relation in several sunfishes and some implications. J Fish Res Board Can 31:1531–1536CrossRefGoogle Scholar
  51. Yan ND, Blukacz A, Sprules WG, Kindy PK, Hackett D, Girard RE, Clark BJ (2001) Changes in zooplankton and the phenology of the spiny water flea, Bythotrephes, following its invasion of Harp Lake, Ontario, Canada. Can J Fish Aquat Sci 58:2341–2350CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA)Universidad de Buenos Aires-CONICET, Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’-CONICETBuenos AiresArgentina
  3. 3.Laboratory 1The Evergreen State CollegeOlympiaUSA

Personalised recommendations