Skip to main content

Ultramicroelectrode Voltammetry and Scanning Electrochemical Microscopy in Room Temperature Ionic Liquids

  • Chapter

Abstract

In recent years, a number of groups have begun using ultramicroelectrodes (UMEs) and scanning electrochemical microscopy (SECM) to study the electrochemical behaviour of room-temperature ionic liquids (RTILs). However, due to their unique physicochemical properties, such as relatively high viscosity, RTILs offer a number of very specific challenges and opportunities for electrochemists attempting to perform such measurements in these liquids. In this chapter, the effects of using RTILs for UME voltammetry and SECM are described. The chapter begins with a description of UME voltammetry and SECM in “conventional” aqueous and organic electrolytes. The origin of the unusual voltammetric and SECM responses often observed in RTILs are then described and the effects of experimental parameters on this behaviour are discussed. The fundamental and applied electrochemical insights that have come from performing UME voltammetry and SECM in RTILs are then described. As we will see, these developments range from new insights into charge transfer across liquid/liquid interfaces to kinetic measurements in solar cells.

Keywords

  • Linear Diffusion
  • Redox Species
  • Deep Eutectic Solvent
  • Spherical Electrode
  • Scan Electrochemical Microscopy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13485-7_4
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-13485-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22

References

  1. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal Chem 61:132–138

    CrossRef  CAS  Google Scholar 

  2. Kwak J, Bard AJ (1989) Scanning electrochemical microscopy – theory of the feedback mode. Anal Chem 61:1221–1227

    CrossRef  CAS  Google Scholar 

  3. Bard AJ, Mirkin MV (eds) (2012) Scanning electrochemical microscopy, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  4. Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st Century. Phys Chem Chem Phys 9:802–823

    CrossRef  CAS  Google Scholar 

  5. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    CrossRef  CAS  Google Scholar 

  6. Fedorov MV, Kornyshev AA (2014) Ionic liquids at electrified interfaces. Chem Rev 114:2978–3036

    CrossRef  CAS  Google Scholar 

  7. Walsh DA, Lovelock KRJ, Licence P (2010) Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes. Chem Soc Rev 39:4185–4194

    CrossRef  CAS  Google Scholar 

  8. Fontaine O, Lagrost C, Ghilane J, Martin P, Trippe G, Fave C, Lacroix JC, Hapiot P, Randriamahazaka HN (2009) Mass transport and heterogeneous electron transfer of a ferrocene derivative in a room-temperature ionic liquid. J Electroanal Chem 632:88–96

    CrossRef  CAS  Google Scholar 

  9. Lovelock KRJ, Cowling FN, Taylor AW, Licence P, Walsh DA (2010) Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids. J Phys Chem B 114:4442–4450

    CrossRef  CAS  Google Scholar 

  10. Lovelock KRJ, Ejigu A, Loh SF, Men S, Licence P, Walsh DA (2011) On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study. Phys Chem Chem Phys 13:10155–10164

    CrossRef  CAS  Google Scholar 

  11. Ghilane J, Lagrost C, Hapiot P (2007) Scanning electrochemical microscopy in nonusual solvents: inequality of diffusion coefficients problem. Anal Chem 79:7383–7391

    CrossRef  CAS  Google Scholar 

  12. Stulik K, Amatore C, Holub K, Marecek V, Kutner W (2000) Microelectrodes. definitions, characterization, and applications (technical report). Pure Appl Chem 72:1483–1492

    CrossRef  CAS  Google Scholar 

  13. Amatore C, Maisonhaute E (2005) When voltammetry reaches nanoseconds. Anal Chem 77:303A–311A

    CrossRef  CAS  Google Scholar 

  14. Forster RJ (1994) Microelectrodes – new dimensions in electrochemistry. Chem Soc Rev 23:289–297

    CrossRef  CAS  Google Scholar 

  15. Lefrou C, Cornut R (2010) Analytical expressions for quantitative scanning electrochemical microscopy (SECM). ChemPhysChem 11:547–556

    CrossRef  CAS  Google Scholar 

  16. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, London

    Google Scholar 

  17. Wipf DO, Kristensen EW, Deakin MR, Wightman RM (1988) Fast-scan cyclic voltammetry as a method to measure rapid, heterogeneous electron-transfer kinetics. Anal Chem 60:306–310

    CrossRef  CAS  Google Scholar 

  18. Mirkin MV, Bard AJ (1992) Simple analysis of quasi-reversible steady-state voltammograms. Anal Chem 64:2293–2302

    CrossRef  CAS  Google Scholar 

  19. Fan FR, Fernández JL, Liu B, Mauzeroll J (2007) Scanning electrochemical microscopy. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  20. Lefrou C (2006) A unified new analytical-approximation for positive feedback currents with a microdisk SECM tip. J Electroanal Chem 592:103–112

    CrossRef  CAS  Google Scholar 

  21. Cornut R, Lefrou C (2007) A unified new analytical approximation for negative feedback currents with a microdisk SECM tip. J Electroanal Chem 608:59–66

    CrossRef  CAS  Google Scholar 

  22. Sun P, Mirkin MV (2006) Kinetics of electron-transfer reactions at nanoelectrodes. Anal Chem 78:6526–6534

    CrossRef  CAS  Google Scholar 

  23. Treichel DA, Mirkin MV, Bard AJ (1994) Scanning electrochemical microscopy. 27. Application of a simplified treatment of an irreversible homogeneous reaction following electron-transfer to the oxidative dimerization of 4-nitrophenolate in acetonitrile. J Phys Chem 98:5751–5757

    CrossRef  CAS  Google Scholar 

  24. Bard AJ, Denault G, Friesner RA, Dornblaser BC, Tuckerman LS (1991) Scanning electrochemical microscopy – theory and application of the transient (chronoamperometric) SECM response. Anal Chem 63:1282–1288

    CrossRef  CAS  Google Scholar 

  25. Etienne M, Schulte A, Schuhmann W (2004) High resolution constant-distance mode alternating current scanning electrochemical microscopy (AC-SECM). Electrochem Commun 6:288–293

    CrossRef  CAS  Google Scholar 

  26. Wang YX, Kececi K, Velmurugan J, Mirkin MV (2013) Electron transfer/ion transfer mode of scanning electrochemical microscopy (SECM): a new tool for imaging and kinetic studies. Chem Sci 4:3606–3616

    CrossRef  CAS  Google Scholar 

  27. Ebejer N, Gueell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR (2013) Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Ann Rev Anal Chem 6:329–351

    CrossRef  CAS  Google Scholar 

  28. Shen M, Ishimatsu R, Kim J, Amemiya S (2012) Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J Am Chem Soc 134:9856–9859

    CrossRef  CAS  Google Scholar 

  29. Walsh DA, Fernandez JL, Mauzeroll J, Bard AJ (2005) Scanning electrochemical microscopy. 55. Fabrication and characterization of micropipet probes. Anal Chem 77:5182–5188

    CrossRef  CAS  Google Scholar 

  30. Mezour MA, Morin M, Mauzeroll J (2011) Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry. Anal Chem 83:2378–2382

    CrossRef  CAS  Google Scholar 

  31. Katemann BB, Schuhmann T (2002) Fabrication and characterization of needle-type Pt-disk nanoelectrodes. Electroanalysis 14:22–28

    CrossRef  CAS  Google Scholar 

  32. Tel-Vered R, Walsh DA, Mehrgardi MA, Bard AJ (2006) Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments. Anal Chem 78:6959–6966

    CrossRef  CAS  Google Scholar 

  33. Mirkin MV, Ren FF, Bard AJ (1992) Scanning electrochemical microscopy. Part 13. Evaluation of the tip shapes of nanometer size microelectrodes. J Electroanal Chem 328:47–62

    CrossRef  CAS  Google Scholar 

  34. Carano M, Bond AM (2007) Prospects for the application of scanning electrochemical microscopy in ionic liquids. Aust J Chem 60:29–34

    CrossRef  CAS  Google Scholar 

  35. Laurenczy G, Dyson PJ (2008) Determination of the viscosity of the ionic liquids [Bmim][PF6] and [Bmim][TF2N] under high CO2 gas pressure using sapphire NMR tubes. Zeitschrift Fur Naturforschung Section B-a. J Chem Sci 63:681–684

    CAS  Google Scholar 

  36. Shiddiky MJA, Torriero AAJ, Zhao C, Burgar I, Kennedy G, Bond AM (2009) Nonadditivity of faradaic currents and modification of capacitance currents in the voltammetry of mixtures of ferrocene and the cobaltocenium cation in protic and aprotic ionic liquids. J Am Chem Soc 131:7976–7989

    CrossRef  CAS  Google Scholar 

  37. Nkuku CA, LeSuer RJ (2007) Electrochemistry in deep eutectic solvents. J Phys Chem B 111:13271–13277

    CrossRef  CAS  Google Scholar 

  38. Combellas C, Fermigier M, Fuchs A, Kanoufi F (2005) Scanning electrochemical microscopy. Hydrodynamics generated by the motion of a scanning tip and its consequences on the tip current. Anal Chem 77:7966–7975

    CrossRef  CAS  Google Scholar 

  39. Wang YJ, Rogers EI, Compton RG (2010) The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. J Electroanal Chem 648:15–19

    CrossRef  CAS  Google Scholar 

  40. Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG (2003) Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: one-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide. J Phys Chem A 107:8872–8878

    CrossRef  CAS  Google Scholar 

  41. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry – a review. ChemPhysChem 5:1106–1120

    CrossRef  CAS  Google Scholar 

  42. Zigah D, Wang AF, Lagrost C, Hapiot P (2009) Diffusion of molecules in ionic liquids/organic solvent mixtures. Example of the reversible reduction of O2 to superoxide. J Phys Chem B 113:2019–2023

    CrossRef  CAS  Google Scholar 

  43. Lu X, Wang Q, Liu X (2007) Review: recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Anal Chim Acta 601:10–25

    CrossRef  CAS  Google Scholar 

  44. Taylor AW, Qiu FL, Hu JP, Licence P, Walsh DA (2008) Heterogeneous electron transfer kinetics at the ionic liquid/metal interface studied using cyclic voltammetry and scanning electrochemical microscopy. J Phys Chem B 112:13292–13299

    CrossRef  CAS  Google Scholar 

  45. Barnes AS, Rogers EI, Streeter I, Aldous L, Hardacre C, Compton RG (2008) Extraction of electrode kinetic parameters from microdisc voltammetric data measured under transport conditions intermediate between steady-state convergent and transient linear diffusion as typically applies to room temperature ionic liquids. J Phys Chem B 112:7560–7565

    CrossRef  CAS  Google Scholar 

  46. Laforge FO, Kakiuchi T, Shigematsu F, Mirkin MV (2004) Comparative study of electron transfer reactions at the ionic liquid/water and organic/water interfaces. J Am Chem Soc 126:15380–15381

    CrossRef  CAS  Google Scholar 

  47. Laforge FO, Kakiuchi T, Shigematsu F, Mirkin MV (2006) SECM study of solute partitioning and electron transfer at the ionic liquid/water interface. Langmuir 22:10705–10710

    CrossRef  CAS  Google Scholar 

  48. Tefashe UM, Nonomura K, Vlachopoulos N, Hagfeldt A, Wittstock G (2012) Effect of cation on dye regeneration kinetics of N719-sensitized TiO2 films in acetonitrile-based and ionic-liquid-based electrolytes investigated by scanning electrochemical microscopy. J Phys Chem C 116:4316–4323

    CrossRef  Google Scholar 

  49. Laforge FO, Velmurugan J, Wang YX, Mirkin MV (2009) Nanoscale imaging of surface topography and reactivity with the scanning electrochemical microscope. Anal Chem 81:3143–3150

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren A. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walsh, D.A. (2015). Ultramicroelectrode Voltammetry and Scanning Electrochemical Microscopy in Room Temperature Ionic Liquids. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-13485-7_4

Download citation