Power-Efficient Assignment of Virtual Machines to Physical Machines

  • Jordi Arjona Aroca
  • Antonio Fernández Anta
  • Miguel A. Mosteiro
  • Christopher Thraves
  • Lin Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8907)


Motivated by current trends in cloud computing, we study a version of the generalized assignment problem where a set of virtual processors has to be implemented by a set of identical processors. For literature consistency, we say that a set of virtual machines (VMs) is assigned to a set of physical machines (PMs). The optimization criteria is to minimize the power consumed by all the PMs. We term the problem Virtual Machine Assignment (VMA). Crucial differences with previous work include a variable number of PMs, that each VM must be assigned to exactly one PM (i.e., VMs cannot be implemented fractionally), and a minimum power consumption for each active PM. Such infrastructure may be strictly constrained in the number of PMs or in the PMs’ capacity, depending on how costly (in terms of power consumption) it is to add a new PM to the system or to heavily load some of the existing PMs. Low usage or ample budget yields models where PM capacity and/or the number of PMs may be assumed unbounded for all practical purposes. We study four VMA problems depending on whether the capacity or the number of PMs is bounded or not. Specifically, we study hardness and online competitiveness for a variety of cases. To the best of our knowledge, this is the first comprehensive study of the VMA problem for this cost function.


Cloud computing Generalized assignment Scheduling Load balancing Power efficiency 


  1. 1.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling. In: Saks, M.E. (ed.) SODA, pp. 493–500. ACM/SIAM (1997)Google Scholar
  2. 2.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Amazon. Amazon web services. http://aws.amazon.com. Accessed 27 August 2012
  4. 4.
    Andrews, M., Fernández Anta, A., Zhang, L., Zhao, W.: Routing for power minimization in the speed scaling model. IEEE/ACM Trans. Netw. 20(1), 285–294 (2012)CrossRefGoogle Scholar
  5. 5.
    Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with (dis)economies of scale. In: Proceedings of 51-st Annual IEEE Symposium on Foundations of Computer Science, pp. 585–592 (2010)Google Scholar
  6. 6.
    Antoniadis, A., Im, S., Krishnaswamy, R., Moseley, B., Nagarajan, V., Pruhs, K., Stein, C.: Energy efficient circuit routing. In: SODA, Hallucination helps (2014)Google Scholar
  7. 7.
    Arjona Aroca, J., Chatzipapas, A., Fernández Anta, A., Mancuso, V.: A measurement-based analysis of the energy consumption of data center servers. In: e-Energy. ACM (2014)Google Scholar
  8. 8.
    Arjona Aroca, J., Fernández Anta, A., Mosteiro, M.A., Thraves, C., Wang, L.: Power-efficient assignment of virtual machines to physical machines (2013). arXiv:1304.7121v2 [cs.DS]. http://arxiv.org/abs/1304.7121
  9. 9.
    Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. In: Proceedings of 20-th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 693–701 (2009)Google Scholar
  10. 10.
    Bansal, N., Gupta, A., Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Multicast routing for energy minimization using speed scaling. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 37–51. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Bellur, U., Rao, C.S., Madhu Kumar, SD.: Optimal placement algorithms for virtual machines (2010). arXiv:1011.5064 (http://arxiv.org/abs/1011.5064)
  12. 12.
    Botero, J.F., Hesselbach, X., Duelli, M., Schlosser, D., Fischer, A., de Meer, H.: Energy efficient virtual network embedding. IEEE Commun. Lett. 16(5), 756–759 (2012)CrossRefGoogle Scholar
  13. 13.
    Cardosa, M., Singh, A., Pucha, H., Chandra, A.: Exploiting spatio-temporal tradeoffs for energy-aware mapreduce in the cloud. In: 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 251–258 (2011)Google Scholar
  14. 14.
    Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capacitated network design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 78–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Chandra, K.A., Wong, C.K.: Worst-case analysis of a placement algorithm related to storage allocation. SIAM J. Comput. 4(3), 249–263 (1975)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Chen, S.-C., Lee, C.-C., Chang, H.-Y., Lai, K.-C., Li, K.-C., Rong, C.: Energy-aware task consolidation technique for cloud computing. In: Proceedings of the IEEE Third International Conference on Cloud Computing Technology and Science, pp. 115–121 (2011)Google Scholar
  17. 17.
    Citrix. Citrix. http://www.citrix.com. Accessed 27 August 2012
  18. 18.
    Cody, R.A., Coffman Jr, E.G.: Record allocation for minimizing expected retrieval costs on drum-like storage devices. J. ACM 23(1), 103–115 (1976)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  20. 20.
    Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39(1), 43–57 (2004)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within \(1 + \epsilon \) in linear time. Combinatorica 1(4), 349–355 (1981)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  23. 23.
    Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear optimization with applications to speed scaling. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 173–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Im, S., Moseley, B., Pruhs, K.: Online scheduling with general cost functions. In: Proceedings of 23-rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1254–1265 (2012)Google Scholar
  25. 25.
    Jansen, R., Brenner, P.R.: Energy efficient virtual machine allocation in the cloud. In: 2011 International Green Computing Conference and Workshops (IGCC), pp. 1–8 (2011)Google Scholar
  26. 26.
    Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. Cluster Comput. 12(1), 1–15 (2009)CrossRefGoogle Scholar
  27. 27.
    Liu, N., Dong, Z., Rojas-Cessa, R.: Task and server assignment for reduction of energy consumption in datacenters. In: Proceedings of the IEEE 11-th International Symposium on Network Computing and Applications, pp. 171–174 (2012)Google Scholar
  28. 28.
    Machida, F., Kawato, M., Maeno, Y.: Redundant virtual machine placement for fault-tolerant consolidated server clusters. In: 2010 IEEE Network Operations and Management Symposium (NOMS), pp. 32–39 (2010)Google Scholar
  29. 29.
    Mark, C.C.T., Niyato, D., Chen-Khong, T.: Evolutionary optimal virtual machine placement and demand forecaster for cloud computing. In: 2011 IEEE International Conference on Advanced Information Networking and Applications (AINA), pp. 348–355 (2011)Google Scholar
  30. 30.
    Mills, K., Filliben, J., Dabrowski, C.: Comparing vm-placement algorithms for on-demand clouds. In: Proceedings of the IEEE Third International Conference on Cloud Computing Technology and Science, pp. 91–98 (2011)Google Scholar
  31. 31.
    Mishra, M., Sahoo, A.: On theory of vm placement: anomalies in existing methodologies and their mitigation using a novel vector based approach. In: 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 275–282 (2011)Google Scholar
  32. 32.
    Nathuji, R., Schwan, K.: Virtualpower: coordinated power management in virtualized enterprise systems. In: SOSP, pp. 265–278 (2007)Google Scholar
  33. 33.
    Van Nguyen, H., Tran, F.D., Menaud, J.-M.: Autonomic virtual resource management for service hosting platforms. In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pp. 1–8. IEEE Computer Society (2009)Google Scholar
  34. 34.
    Rackspace. Rackspace. http://www.rackspace.com. Accessed 27 August 2012
  35. 35.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems, HotPower’08, p. 10. USENIX Association (2008)Google Scholar
  36. 36.
    Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-efficient scheduling heuristics for deadline constrained workloads on hybrid clouds. In: Proceedings of the IEEE Third International Conference on Cloud Computing Technology and Science, pp. 320–327 (2011)Google Scholar
  37. 37.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)Google Scholar
  38. 38.
    Viswanathan, H., Lee, E.K., Rodero, I., Pompili, D., Parashar, M., Gamell, M.: Energy-aware application-centric vm allocation for HPC workloads. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), pp. 890–897 (2011)Google Scholar
  39. 39.
    Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic bandwidth demand in data centers. In: IEEE INFOCOM, pp. 71–75 (2011)Google Scholar
  40. 40.
    Xu, J., Fortes, J.: A multi-objective approach to virtual machine management in datacenters. In: Proceedings of the 8th ACM International Conference on Autonomic Computing, ICAC ’11, pp. 225–234. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jordi Arjona Aroca
    • 1
  • Antonio Fernández Anta
    • 2
  • Miguel A. Mosteiro
    • 3
  • Christopher Thraves
    • 4
  • Lin Wang
    • 5
  1. 1.Universidad Carlos III de MadridMadridSpain
  2. 2.Institute IMDEA NetworksMadridSpain
  3. 3.Department of Computer ScienceKean UniversityUnionUSA
  4. 4.CNRS-LAAS and University of Toulouse - LAASTolouseFrance
  5. 5.Institute of Computing TechnologyChinese Academy of Sciences and University of Chinese Academy of SciencesBeijingChina

Personalised recommendations