Skip to main content

Distortion Risk Measures Under Skew Normal Settings

  • Chapter
  • First Online:
Econometrics of Risk

Part of the book series: Studies in Computational Intelligence ((SCI,volume 583))

Abstract

Coherent distortion risk measure is needed in the actuarial and financial fields in order to provide incentive for active risk management. The purpose of this study is to propose extended versions of Wang transform using skew normal distribution functions. The main results show that the extended version of skew normal distortion risk measure is coherent and its transform satisfies the classic capital asset pricing model. Properties of the stock price model under log-skewnormal and its transform are also studied. A simulation based on the skew normal transforms is given for a insurance payoff function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Thinking coherently: generalised scenarios rather than var should be used when calculating regulatory capital. Risk-Lond.-Risk Mag. Ltd. 10, 68–71 (1997)

    Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12, 171–178 (1985)

    MATH  MathSciNet  Google Scholar 

  4. Basak, S., Shapiro, A.: Value-at-risk-based risk management: optimal policies and asset prices. Rev. Financ. stud. 14(2), 371–405 (2001)

    Article  Google Scholar 

  5. Butsic, R.P.: Capital Allocation for property-liability insurers: a catastrophe reinsurance application. In: Casualty Actuarial Society Forum, pp. 1–70 (1999)

    Google Scholar 

  6. Fernández, C., Steel, M.F.: On Bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc. 93(441), 359–371 (1998)

    MATH  Google Scholar 

  7. Gupta, A.K., Chang, F.C., Huang, W.J.: Some skew-symmetric models. Random Oper. Stoc. Equ. 10, 133–140 (2002)

    Google Scholar 

  8. Hull, J.C.: Options, Futures and Other Derivatives. Pearson Education, New York (1999)

    Google Scholar 

  9. Hürlimann, W.: On stop-loss order and the distortion pricing principle. Astin Bull. 28, 119–134 (1998)

    Article  MATH  Google Scholar 

  10. Hürlimann, W.: Distortion risk measures and economic capital. N. Am. Actuar. J. 8(1), 86–95 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hürlimann, W.: Conditional value-at-risk bounds for compound Poisson risks and a normal approximation. J. Appl. Math. 2003(3), 141–153 (2003)

    Article  MATH  Google Scholar 

  12. Jones, M.C., Faddy, M.J.: A skew extension of the t-distribution, with applications. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 65(1), 159–174 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kijima, M.: A multivariate extension of equilibrium pricing transforms: the multivariate Esscher and Wang transforms for pricing financial and insurance risks. Astin Bull. 36(1), 269 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lee, Y.S.: The mathematics of excess of loss coverages and retrospective rating-a graphical approach. PCAS LXXV 49 (1988)

    Google Scholar 

  15. Lin, G.D., Stoyanov, J.: The logarithmic skew-normal distributions are moment-indeterminate. J. Appl. Probab. 46(3), 909–916 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, B., Wang, T., Tian, W.: Risk measures and asset pricing models with new versions of Wang transform. In: Uncertainty Analysis in Econometrics with Applications, pp. 155–167. Springer, Berlin (2013)

    Google Scholar 

  17. Ma, Y., Genton, M.G.: Flexible class of skew-symmetric distributions. Scand. J. Stat. 31(3), 459–468 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merton, R.C.: An intertemporal capital asset pricing model. Econom.: J. Econom. Soc. 41, 867–887 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nekoukhou, V., Alamatsaz, M.H., Aghajani, A.H.: A flexible skew-generalized normal distribution. Commun. Stat.-Theory Methods 42(13), 2324–2334 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sharpe, W.F.: The sharpe ratio. J. Portf. Manag. 21(1), 4958 (1994)

    Article  Google Scholar 

  21. Venter, G.G.: Premium calculation implications of reinsurance without arbitrage. Astin Bull. 21(2), 223–230 (1991)

    Article  Google Scholar 

  22. Wang, S.S.: Premium calculation by transforming the layer premium density. Astin Bull. 26, 71–92 (1996)

    Article  Google Scholar 

  23. Wang, S.S.: A class of distortion operators for pricing financial and insurance risks. J. Risk Insur. 67, 15–36 (2000)

    Article  Google Scholar 

  24. Wang, S.S.: A universal framework for pricing financial and insurance risks. Astin Bull. 32(2), 213–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, S.S.: Cat bond pricing using probability transforms. Geneva Papers: Etudes et Dossiers, special issue on Insurance and the State of the Art in Cat Bond Pricing 278, 19–29 (2004)

    Google Scholar 

  26. Wang, T., Li, B., Gupta, A.K.: Distribution of quadratic forms under skew normal settings. J. Multivar. Anal. 100(3), 533–545 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wirch, J.L., Hardy, M.R.: A synthesis of risk measures for capital adequacy. Insur.: Math. Econ. 25(3), 337–347 (1999)

    MATH  Google Scholar 

  28. Wirch, J.L., Hardy, M.R.: Distortion risk measures. Coherence and stochastic dominance. In: International Congress on Insurance: Mathematics and Economics, pp. 15–17 (2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ying Wang for proofreading of this paper and anonymous referees for their valuable comments which let the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tian, W., Wang, T., Hu, L., Tran, H.D. (2015). Distortion Risk Measures Under Skew Normal Settings. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S., Suriya, K. (eds) Econometrics of Risk. Studies in Computational Intelligence, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-319-13449-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13449-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13448-2

  • Online ISBN: 978-3-319-13449-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics