Advertisement

Relationships Among Subaquatic Environment and Leaf/Palinomorph Assemblages of the Quaternary Mogi-Guaçú River Alluvial Plain, SP, Brazil

  • Fresia Ricardi-BrancoEmail author
  • Sueli Yoshinaga Pereira
  • Melina Mara Souza
  • Francisco Santiago
  • Paulo Ricardo Brum Pereira
  • Fabio C. Branco
  • Victor Ribeiro
  • Karen Molina
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Environmental features of the Mogi-Guaçú River fluvial plain located in the northeast portion of the São Paulo State, Brazil as characterized by the dynamics of subaquatic environment, the current pollen rain and climatic analysis of leaf morphologies in selected meander bends. As the area forms a transition between the Cerrado (Wood Savanna) and Mata Atlântica (Atlantic Forest), located in the Ecological Station of Mogi-Guaçú (EEcMG), in the municipality of Mogi-Guaçú, district of Martinho Prado Jr. (between 22° 10′S and 22° 18′S and 47° 08′W and 47° 11′W), the present environmental study involves helped improving the knowledge about the origin and evolution of the Cerrado and Mata Atlântica, and the dynamics of the Quaternary plains that sustain this river ecosystem.

Keywords

Pollen rain Leaf assemblage Hydrogeology Hydrochemistry 

Notes

Acknowledgments

The authors acknowledge the grant 2010/20379-6, from São Paulo Research Foundation (FAPESP), and the collaboration of the Forestry Institute of Sao Paulo State, National Council of Scientific and Technology Development (CNPq), and the Coordination of Personal Improvement for Graduation (CAPES) for the grants given to students and the researchers.

References

  1. Aguiar LMS, Camargo AJA (2004) Cerrado: ecologia e caracterização. Embrapa cerrados, Brasilia, Planaltina-DF/Google Scholar
  2. Barberi M, Salgado-Labouriau ML, Suguio K, Martin L, Turq B, Salgado-Labouriau ML, Suguio K (2000) Paleovegetation and Paleoclimate of “ Vereda de Águas Emendadas”, DF, Central do Brazil. J S Am Earth Sci 13:241–254CrossRefGoogle Scholar
  3. Burk D, Uhl D, Walter H (2005) Some aspects of the actuotaphonomy of leaves in stagnant ponds with implications for the formation of fossil leaf deposits—Preliminary results: Neues Neues Jahrbuch fur Geologie und Paleontologie. Monatshefte 12:705–728Google Scholar
  4. Burnham RJ (1989) Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Rev Palaeobot Palynol 58:5–32. doi: 10.1016/0034-6667(89)90054-7 CrossRefGoogle Scholar
  5. Burnham RJ (1990) Paleobotanical implications of drifted seeds and fruits from modern mangrove litter Twin Cays, Belize. Palaios 5:364–370CrossRefGoogle Scholar
  6. Burnham RJ (1994) Patterns in tropical leaf litter and implications for angiosperm paleobotany. Rev Palaeobot Palynol 81:99–113. doi: http://dx.doi.org/10.1016/0034-6667 (94) 90129-5
  7. Burnham RJ, Ellis B, Johnson KR (2005) Modern tropical forest taphonomy: does high biodiversity affect paleoclimatic interpretations? Palaios 20:439–451CrossRefGoogle Scholar
  8. Burnham RJ, Pitman NCA, Johnson KR, Wilf P (2001) Habitat-related error estimating temperatures from leaf margins in a humid tropical forest. Am J Bot 88:1096–1102. doi: 10.2307/2657093 CrossRefGoogle Scholar
  9. Burt TP, Bates PD, Stewart MD, Claxton AJ, Anderson MG, Price DA (2002a) Water table fluctuations within the floodplain of the River Severn, England. J Hydrol 262:1–20CrossRefGoogle Scholar
  10. Burt TP, Pinay G, Matheson FE, Haycock NE, Butturini A, Clement JC, Danielescu S, Dowrick DJ, Hefting MM, Hillbricht-Ilkowaska A, Maitre V (2002b) Water table fluctuations in the riparian zone: comparative results from a pan-European experiment. J Hydrol 265:129–148CrossRefGoogle Scholar
  11. CBH-Mogi—Comitê da Bacia Hidrográfica do Rio Mogi-Guaçú (1999) Diagnóstico da Bacia Hidrográfica do Rio Mogi-Guaçú—“Relatório Zero”, p 252Google Scholar
  12. Chen X (2007) Hydrologic connections of a stream-aquifer-vegetation zone in south-central Platte River valley, Nebraska. J Hydrol 333:554–568CrossRefGoogle Scholar
  13. Denver Museum of Nature and Science (2011) Guide to morphotyping fossil floras. http://www.paleobotanyproject.org/morphotyping.aspx. Accessed 20 January 2011
  14. Eiten G (1963) Habitat flora of Fazenda Campininha, São Paulo, Brazil. In: Ferri MG (Coord.). Simpósio sobre o Cerrado. Edgard Blucher e EDUSP, São Paulo, pp 157–202Google Scholar
  15. Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca, New YorkGoogle Scholar
  16. Faegri K, Iversen J (1989) Textbook of pollen analysis. John Wiley & Sons, LTD, ChichesterGoogle Scholar
  17. Fanton JCM (2013) Reconstruindo as florestas tropicais úmidas do Eoceno-Oligoceno do sudeste do Brasil (Bacias de Fonseca e Gandarela, Minas Gerais) com folhas de Fabaceae, Myrtaceae e outras angiospermas: Origens da Mata Atlântica. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  18. Gastaldo RA (1994) The genesis and sedimentation of phytoclasts with examples from coastal environments. In: Traverse A (ed) Sedimentation of organic particles. Cambridge University Press, Cambridge, UK, pp 103–127CrossRefGoogle Scholar
  19. Gastaldo RA (2001) Plant Taphonomy. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Scientific, Oxford, pp 314–317Google Scholar
  20. Gastaldo RA (2004) The relationship between bedform and log orientation in a paleogene fluvial channel Weibelster Basin, Germany: implication for the use of coarse woody debris for paleocurrent analysis. Palaios 19:587–597CrossRefGoogle Scholar
  21. Gastaldo RA, Douglass DP, MacCarroll SM (1987) Origin, characteristics and provenance of plant macrodetritus in a holocene crevasse splay, mobile delta, alabama. Palaios 2:229–240CrossRefGoogle Scholar
  22. Gouveia SEM, Pessenda LCR, Boulet R, Aravena R, Scheel-Ybert R (1999) Isótopos do carbono dos carvões e da matéria orgânica do solo em estudos de mudança de vegetação e clima no Quaternário e da taxa de formação de solos no Estado de São Paulo. Anais da Acadêmia Brasileira de Ciências 71:969–980. doi: 10.1016/0895-9811(96)00007-7 Google Scholar
  23. Hinojosa LF, Pérez F, Gaxiola A, Sandoval I (2011) Historical and phylogenetic constraints on the incidence of entire leaf margins: insights from a new South American model. Global Ecol Biogeogr 20:380–390. doi: 10.1111/j.1466-8238.2010.00595.x CrossRefGoogle Scholar
  24. Hvorslev MJ (1951) Time lag and soil permeability in groundwater observations. Waterway experiment station. US Army. Bull 36:1–50Google Scholar
  25. Jacobs BF, Herendeen PS (2004) Eocene dry climated and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeogr Palaeoclimatol Palaeoecol 213:115–123. doi: 10.1016/j.palaeo.2004.07.007 CrossRefGoogle Scholar
  26. Kowalski EA (2002) Mean annual temperature estimation based on leaf morphology: a test from tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 188:141–165. doi: 10.1016/j.gloplacha.2007.07.001 CrossRefGoogle Scholar
  27. Lautz LK, Siegel DI (2006) Modeling surface and groundwater mixing in the hyporheic zone using MODFLOW and MT3D. Adv Water Resour 29:1618–1633CrossRefGoogle Scholar
  28. Ledru MP, Campello RC, Landim D, Dominguez JM, Martin L, Mourguiaat P, Sifeddine A, Turcq B (2001) Late-Glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil. Quatern Res 55:47–56CrossRefGoogle Scholar
  29. Minckley TA, Brunelle A, Blissett S (2011) Holocene sedimentary and environmental history of an in-channel wetland along the ecotone of the sonora and chihuahua desert grasslands. Quatern Int 235:40–47. doi: 10.1016/j.quaint.2010.06.031 CrossRefGoogle Scholar
  30. Montovani S (1983) Composição e similiaridade florística, fenologia e spectro biológico do Cerrado na Reserva Biológica de Mogi-Guaçú, Estado de São Paulo. Campinas. 147 p. Dissertação (Mestrado em Biologia—Ecologia)—Instituto de Biologia, Universidade Estadual de Campinas, CampinasGoogle Scholar
  31. Passos MJ (1998) Estrutura da vegetação arbórea e regeneração natural em remanescentes de Mata Ciliar do Rio Mogi Guaçú-SP. Piracicaba. 68 p. Dissertação (Mestrado em Ciências Florestais). Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaGoogle Scholar
  32. Peppe DJ, Royer DL, Cariglino B et al (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 190:724–739. doi: 10.1111/j.1469-8137.2010.03615.x CrossRefGoogle Scholar
  33. Pereira SY, de Souza MM, Ricardi-Branco F, Pereira PRB, Cardinale F, Zazera R (2013) Trace elements and palynomorphs in the core sediments of a tropical urban pond. In: Yuanzhi Z, Pallav R (eds) Climate change and regional/local responses, vol. 1. InTech, Croatia, pp 225–233Google Scholar
  34. Perrota MM, Salvador ED, Lopes RC, D’ Agostino LZ, Peruffo N, Gomes SD, Sachs LLB, Meira VT, Garcia MGM, Lacerda Filho JV (2005) Mapa Geológico do Estado de São Paulo, escala 1:750.000. Programa Geologia do Brasil—PGB, CPRM, São PauloGoogle Scholar
  35. Petri S, Fúlfaro VJ (1981) Fanerozóico. In: Queiroz TA (ed) Geologia do Brasil. Editora da USP, São PauloGoogle Scholar
  36. Pinto MM, Giudice Neto JD, Batista EA, Toledo Filho DV, Mota IS (1997) Vegetação nativa das unidades de conservação e produção de Mogi-Guaçú. In: Coletânea de trabalhos do Congresso Brasileiro de Unidades de Conservação. Secretária do Meio Ambiente do Estado de São Paulo, São PauloGoogle Scholar
  37. Rassam DW, Fellows CS, De Hayr R, Hunter H, Bloesch P (2006) The hydrology of riparian buffer zones: two cases studies in an ephemeral and perennial stream. J Hydrol 325:306–324CrossRefGoogle Scholar
  38. Raunkiaer C (1934) The Life forms of plants and statistical plant geography. Clarendon Press, OxfordGoogle Scholar
  39. Ribeiro JF, Walter BMT (2008) As principais fitofionomias do Bioma Cerrado. In: Sano SM, De Almeida SP, Ribeiro JF Cerrado: Ecologia e Flora. Embrapa Cerrados.- Brasília, DF: Embrapa Informação tecnológica, vol 1, pp 153–212Google Scholar
  40. Ricardi-Branco F, Branco FC, Garcia RF, Faria RS, Pereira SY, Portugal R, Pessenda LC, Pereira PRB (2009) Features of plant accumulations along the Itanhaém River, on the southern coast of the Brazilian state of São Paulo. Palaios 24:416–424. doi: 10.2110/palo.2008.p08-079r CrossRefGoogle Scholar
  41. Ricardi-Branco F, Pereira SY, Cardinale F, Pereira PBR (2011) Accumulation of bio debris and its relation with the underwater environment in the estuary of Itanhaem river, Sao Paulo State. In: Imran AD, Mithas AD (eds) Earth and environmental sciences/Book2, 1st edn, vol 2. In Tech Publisher, Rijeka, pp 565–590Google Scholar
  42. Royer DL (2012) Climate reconstruction from leaf size and shape: new developments and challenges. In: Ivany LC, Huber BT (eds) Reconstructing Earth’s Deep-Time Climate. The State of the Art in 2012, Paleontological society short course, November 3, 2012. (Paleontological Society Papers) 18:195–212Google Scholar
  43. Rushton K (2007) Representation in regional models of saturated river-aquifer interaction for gaining/ losing rivers. J Hydrol 334:262–281CrossRefGoogle Scholar
  44. Salgado-Labouriau ML (1997) Late quaternary paleoclimate in the savannas of South América. J Quat Sci 12:371–379CrossRefGoogle Scholar
  45. Schilling KE (2007) Water table fluctuations under three riparian land covers, Iowa (USA). Hydrol Process 21:2415–2424CrossRefGoogle Scholar
  46. Spavorek G, Van Lier QDJ, Dourado Neto D (2007) Computer assisted koeppen climate classification: a case study for Brazil. Int J Climatol 27:257–266CrossRefGoogle Scholar
  47. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. doi: 10.1007/s10040-001-0170-8 CrossRefGoogle Scholar
  48. Souza MM, Ricardi-Branco F, Jasper A, Pessenda LCR (2013) Evolução Paleoambiental Holocênica no Nordeste do Estado de São Paulo. Revista Brasileira de Paleontologia. 16:297–308. doi: 10.4072/rbp.2013.2.10 CrossRefGoogle Scholar
  49. Steart DC, Spicer RA, Bamford MK (2010) Is southern Africa different? An investigation of the relationship between leaf physiognomy and climate in southern African mesic vegetation. Rev Palaeobot Palynol 162:607–620. doi: 10.1016/j.revpalbo.2010.08.002 CrossRefGoogle Scholar
  50. Vidon PF, Hill AR (2004) Landscape controls hydrology of stream riparian zones. J Hydrol 292:210–228CrossRefGoogle Scholar
  51. Webb LJ (1959) A physiognomic classification of Australian rain forest. J Ecol 47:551–570CrossRefGoogle Scholar
  52. Wilf P (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373–390Google Scholar
  53. Wilf P, Wing SL, Greenwood DR, Greenwood CL (1998) Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203–206CrossRefGoogle Scholar
  54. Woessner W (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Groundwater 38:423–429CrossRefGoogle Scholar
  55. Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv Bull 2040:1–71Google Scholar
  56. Yang J, Spicer RA, Spicer TEV, Li CS (2011) ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio Palaeoenv 91:163–183. doi: 10.1007/s12549-011-0056-2 CrossRefGoogle Scholar
  57. Zancopé MHC, Perez-Filho A, Carpi S Jr (2009) Anomalias no Perfil Longitudinal e Migração dos meandros do Rio Mogi Guaçu. Revista Brasileira de Geomorfologia 10:31–42Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fresia Ricardi-Branco
    • 1
    Email author
  • Sueli Yoshinaga Pereira
    • 1
  • Melina Mara Souza
    • 1
  • Francisco Santiago
    • 1
  • Paulo Ricardo Brum Pereira
    • 2
  • Fabio C. Branco
    • 3
  • Victor Ribeiro
    • 1
  • Karen Molina
    • 1
  1. 1.Department of Geology and Natural Resources, Institute of GeosciencesUniversity of CampinasCampinasBrazil
  2. 2.Forestry Institute, São Paulo State Environmental SecretariatMogi MirimBrazil
  3. 3.EnvironmentalitySão PauloBrazil

Personalised recommendations