Skip to main content

Relationships Among Subaquatic Environment and Leaf/Palinomorph Assemblages of the Quaternary Mogi-Guaçú River Alluvial Plain, SP, Brazil

  • Chapter
  • First Online:
Environmental Management of River Basin Ecosystems

Abstract

Environmental features of the Mogi-Guaçú River fluvial plain located in the northeast portion of the São Paulo State, Brazil as characterized by the dynamics of subaquatic environment, the current pollen rain and climatic analysis of leaf morphologies in selected meander bends. As the area forms a transition between the Cerrado (Wood Savanna) and Mata Atlântica (Atlantic Forest), located in the Ecological Station of Mogi-Guaçú (EEcMG), in the municipality of Mogi-Guaçú, district of Martinho Prado Jr. (between 22° 10′S and 22° 18′S and 47° 08′W and 47° 11′W), the present environmental study involves helped improving the knowledge about the origin and evolution of the Cerrado and Mata Atlântica, and the dynamics of the Quaternary plains that sustain this river ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar LMS, Camargo AJA (2004) Cerrado: ecologia e caracterização. Embrapa cerrados, Brasilia, Planaltina-DF/

    Google Scholar 

  • Barberi M, Salgado-Labouriau ML, Suguio K, Martin L, Turq B, Salgado-Labouriau ML, Suguio K (2000) Paleovegetation and Paleoclimate of “ Vereda de Águas Emendadas”, DF, Central do Brazil. J S Am Earth Sci 13:241–254

    Article  Google Scholar 

  • Burk D, Uhl D, Walter H (2005) Some aspects of the actuotaphonomy of leaves in stagnant ponds with implications for the formation of fossil leaf deposits—Preliminary results: Neues Neues Jahrbuch fur Geologie und Paleontologie. Monatshefte 12:705–728

    Google Scholar 

  • Burnham RJ (1989) Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Rev Palaeobot Palynol 58:5–32. doi:10.1016/0034-6667(89)90054-7

    Article  Google Scholar 

  • Burnham RJ (1990) Paleobotanical implications of drifted seeds and fruits from modern mangrove litter Twin Cays, Belize. Palaios 5:364–370

    Article  Google Scholar 

  • Burnham RJ (1994) Patterns in tropical leaf litter and implications for angiosperm paleobotany. Rev Palaeobot Palynol 81:99–113. doi: http://dx.doi.org/10.1016/0034-6667 (94) 90129-5

  • Burnham RJ, Ellis B, Johnson KR (2005) Modern tropical forest taphonomy: does high biodiversity affect paleoclimatic interpretations? Palaios 20:439–451

    Article  Google Scholar 

  • Burnham RJ, Pitman NCA, Johnson KR, Wilf P (2001) Habitat-related error estimating temperatures from leaf margins in a humid tropical forest. Am J Bot 88:1096–1102. doi:10.2307/2657093

    Article  Google Scholar 

  • Burt TP, Bates PD, Stewart MD, Claxton AJ, Anderson MG, Price DA (2002a) Water table fluctuations within the floodplain of the River Severn, England. J Hydrol 262:1–20

    Article  Google Scholar 

  • Burt TP, Pinay G, Matheson FE, Haycock NE, Butturini A, Clement JC, Danielescu S, Dowrick DJ, Hefting MM, Hillbricht-Ilkowaska A, Maitre V (2002b) Water table fluctuations in the riparian zone: comparative results from a pan-European experiment. J Hydrol 265:129–148

    Article  Google Scholar 

  • CBH-Mogi—Comitê da Bacia Hidrográfica do Rio Mogi-Guaçú (1999) Diagnóstico da Bacia Hidrográfica do Rio Mogi-Guaçú—“Relatório Zero”, p 252

    Google Scholar 

  • Chen X (2007) Hydrologic connections of a stream-aquifer-vegetation zone in south-central Platte River valley, Nebraska. J Hydrol 333:554–568

    Article  Google Scholar 

  • Denver Museum of Nature and Science (2011) Guide to morphotyping fossil floras. http://www.paleobotanyproject.org/morphotyping.aspx. Accessed 20 January 2011

  • Eiten G (1963) Habitat flora of Fazenda Campininha, São Paulo, Brazil. In: Ferri MG (Coord.). Simpósio sobre o Cerrado. Edgard Blucher e EDUSP, São Paulo, pp 157–202

    Google Scholar 

  • Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca, New York

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. John Wiley & Sons, LTD, Chichester

    Google Scholar 

  • Fanton JCM (2013) Reconstruindo as florestas tropicais úmidas do Eoceno-Oligoceno do sudeste do Brasil (Bacias de Fonseca e Gandarela, Minas Gerais) com folhas de Fabaceae, Myrtaceae e outras angiospermas: Origens da Mata Atlântica. Dissertation, Universidade Estadual de Campinas

    Google Scholar 

  • Gastaldo RA (1994) The genesis and sedimentation of phytoclasts with examples from coastal environments. In: Traverse A (ed) Sedimentation of organic particles. Cambridge University Press, Cambridge, UK, pp 103–127

    Chapter  Google Scholar 

  • Gastaldo RA (2001) Plant Taphonomy. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Scientific, Oxford, pp 314–317

    Google Scholar 

  • Gastaldo RA (2004) The relationship between bedform and log orientation in a paleogene fluvial channel Weibelster Basin, Germany: implication for the use of coarse woody debris for paleocurrent analysis. Palaios 19:587–597

    Article  Google Scholar 

  • Gastaldo RA, Douglass DP, MacCarroll SM (1987) Origin, characteristics and provenance of plant macrodetritus in a holocene crevasse splay, mobile delta, alabama. Palaios 2:229–240

    Article  Google Scholar 

  • Gouveia SEM, Pessenda LCR, Boulet R, Aravena R, Scheel-Ybert R (1999) Isótopos do carbono dos carvões e da matéria orgânica do solo em estudos de mudança de vegetação e clima no Quaternário e da taxa de formação de solos no Estado de São Paulo. Anais da Acadêmia Brasileira de Ciências 71:969–980. doi:10.1016/0895-9811(96)00007-7

    Google Scholar 

  • Hinojosa LF, Pérez F, Gaxiola A, Sandoval I (2011) Historical and phylogenetic constraints on the incidence of entire leaf margins: insights from a new South American model. Global Ecol Biogeogr 20:380–390. doi:10.1111/j.1466-8238.2010.00595.x

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in groundwater observations. Waterway experiment station. US Army. Bull 36:1–50

    Google Scholar 

  • Jacobs BF, Herendeen PS (2004) Eocene dry climated and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeogr Palaeoclimatol Palaeoecol 213:115–123. doi:10.1016/j.palaeo.2004.07.007

    Article  Google Scholar 

  • Kowalski EA (2002) Mean annual temperature estimation based on leaf morphology: a test from tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 188:141–165. doi:10.1016/j.gloplacha.2007.07.001

    Article  Google Scholar 

  • Lautz LK, Siegel DI (2006) Modeling surface and groundwater mixing in the hyporheic zone using MODFLOW and MT3D. Adv Water Resour 29:1618–1633

    Article  Google Scholar 

  • Ledru MP, Campello RC, Landim D, Dominguez JM, Martin L, Mourguiaat P, Sifeddine A, Turcq B (2001) Late-Glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil. Quatern Res 55:47–56

    Article  Google Scholar 

  • Minckley TA, Brunelle A, Blissett S (2011) Holocene sedimentary and environmental history of an in-channel wetland along the ecotone of the sonora and chihuahua desert grasslands. Quatern Int 235:40–47. doi:10.1016/j.quaint.2010.06.031

    Article  Google Scholar 

  • Montovani S (1983) Composição e similiaridade florística, fenologia e spectro biológico do Cerrado na Reserva Biológica de Mogi-Guaçú, Estado de São Paulo. Campinas. 147 p. Dissertação (Mestrado em Biologia—Ecologia)—Instituto de Biologia, Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Passos MJ (1998) Estrutura da vegetação arbórea e regeneração natural em remanescentes de Mata Ciliar do Rio Mogi Guaçú-SP. Piracicaba. 68 p. Dissertação (Mestrado em Ciências Florestais). Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Peppe DJ, Royer DL, Cariglino B et al (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 190:724–739. doi:10.1111/j.1469-8137.2010.03615.x

    Article  Google Scholar 

  • Pereira SY, de Souza MM, Ricardi-Branco F, Pereira PRB, Cardinale F, Zazera R (2013) Trace elements and palynomorphs in the core sediments of a tropical urban pond. In: Yuanzhi Z, Pallav R (eds) Climate change and regional/local responses, vol. 1. InTech, Croatia, pp 225–233

    Google Scholar 

  • Perrota MM, Salvador ED, Lopes RC, D’ Agostino LZ, Peruffo N, Gomes SD, Sachs LLB, Meira VT, Garcia MGM, Lacerda Filho JV (2005) Mapa Geológico do Estado de São Paulo, escala 1:750.000. Programa Geologia do Brasil—PGB, CPRM, São Paulo

    Google Scholar 

  • Petri S, Fúlfaro VJ (1981) Fanerozóico. In: Queiroz TA (ed) Geologia do Brasil. Editora da USP, São Paulo

    Google Scholar 

  • Pinto MM, Giudice Neto JD, Batista EA, Toledo Filho DV, Mota IS (1997) Vegetação nativa das unidades de conservação e produção de Mogi-Guaçú. In: Coletânea de trabalhos do Congresso Brasileiro de Unidades de Conservação. Secretária do Meio Ambiente do Estado de São Paulo, São Paulo

    Google Scholar 

  • Rassam DW, Fellows CS, De Hayr R, Hunter H, Bloesch P (2006) The hydrology of riparian buffer zones: two cases studies in an ephemeral and perennial stream. J Hydrol 325:306–324

    Article  Google Scholar 

  • Raunkiaer C (1934) The Life forms of plants and statistical plant geography. Clarendon Press, Oxford

    Google Scholar 

  • Ribeiro JF, Walter BMT (2008) As principais fitofionomias do Bioma Cerrado. In: Sano SM, De Almeida SP, Ribeiro JF Cerrado: Ecologia e Flora. Embrapa Cerrados.- Brasília, DF: Embrapa Informação tecnológica, vol 1, pp 153–212

    Google Scholar 

  • Ricardi-Branco F, Branco FC, Garcia RF, Faria RS, Pereira SY, Portugal R, Pessenda LC, Pereira PRB (2009) Features of plant accumulations along the Itanhaém River, on the southern coast of the Brazilian state of São Paulo. Palaios 24:416–424. doi:10.2110/palo.2008.p08-079r

    Article  Google Scholar 

  • Ricardi-Branco F, Pereira SY, Cardinale F, Pereira PBR (2011) Accumulation of bio debris and its relation with the underwater environment in the estuary of Itanhaem river, Sao Paulo State. In: Imran AD, Mithas AD (eds) Earth and environmental sciences/Book2, 1st edn, vol 2. In Tech Publisher, Rijeka, pp 565–590

    Google Scholar 

  • Royer DL (2012) Climate reconstruction from leaf size and shape: new developments and challenges. In: Ivany LC, Huber BT (eds) Reconstructing Earth’s Deep-Time Climate. The State of the Art in 2012, Paleontological society short course, November 3, 2012. (Paleontological Society Papers) 18:195–212

    Google Scholar 

  • Rushton K (2007) Representation in regional models of saturated river-aquifer interaction for gaining/ losing rivers. J Hydrol 334:262–281

    Article  Google Scholar 

  • Salgado-Labouriau ML (1997) Late quaternary paleoclimate in the savannas of South América. J Quat Sci 12:371–379

    Article  Google Scholar 

  • Schilling KE (2007) Water table fluctuations under three riparian land covers, Iowa (USA). Hydrol Process 21:2415–2424

    Article  Google Scholar 

  • Spavorek G, Van Lier QDJ, Dourado Neto D (2007) Computer assisted koeppen climate classification: a case study for Brazil. Int J Climatol 27:257–266

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. doi:10.1007/s10040-001-0170-8

    Article  Google Scholar 

  • Souza MM, Ricardi-Branco F, Jasper A, Pessenda LCR (2013) Evolução Paleoambiental Holocênica no Nordeste do Estado de São Paulo. Revista Brasileira de Paleontologia. 16:297–308. doi:10.4072/rbp.2013.2.10

    Article  Google Scholar 

  • Steart DC, Spicer RA, Bamford MK (2010) Is southern Africa different? An investigation of the relationship between leaf physiognomy and climate in southern African mesic vegetation. Rev Palaeobot Palynol 162:607–620. doi:10.1016/j.revpalbo.2010.08.002

    Article  Google Scholar 

  • Vidon PF, Hill AR (2004) Landscape controls hydrology of stream riparian zones. J Hydrol 292:210–228

    Article  Google Scholar 

  • Webb LJ (1959) A physiognomic classification of Australian rain forest. J Ecol 47:551–570

    Article  Google Scholar 

  • Wilf P (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373–390

    Google Scholar 

  • Wilf P, Wing SL, Greenwood DR, Greenwood CL (1998) Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203–206

    Article  Google Scholar 

  • Woessner W (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Groundwater 38:423–429

    Article  Google Scholar 

  • Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv Bull 2040:1–71

    Google Scholar 

  • Yang J, Spicer RA, Spicer TEV, Li CS (2011) ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio Palaeoenv 91:163–183. doi:10.1007/s12549-011-0056-2

    Article  Google Scholar 

  • Zancopé MHC, Perez-Filho A, Carpi S Jr (2009) Anomalias no Perfil Longitudinal e Migração dos meandros do Rio Mogi Guaçu. Revista Brasileira de Geomorfologia 10:31–42

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the grant 2010/20379-6, from São Paulo Research Foundation (FAPESP), and the collaboration of the Forestry Institute of Sao Paulo State, National Council of Scientific and Technology Development (CNPq), and the Coordination of Personal Improvement for Graduation (CAPES) for the grants given to students and the researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fresia Ricardi-Branco .

Editor information

Editors and Affiliations

Appendix

Appendix

Results to chemical analyses (ICP-MS) at Catingueiro. <LOD—lesser than the limit of detection.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ricardi-Branco, F. et al. (2015). Relationships Among Subaquatic Environment and Leaf/Palinomorph Assemblages of the Quaternary Mogi-Guaçú River Alluvial Plain, SP, Brazil. In: Ramkumar, M., Kumaraswamy, K., Mohanraj, R. (eds) Environmental Management of River Basin Ecosystems. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13425-3_30

Download citation

Publish with us

Policies and ethics