Learning Probabilistic Description Logics

  • Fabrizio Riguzzi
  • Elena Bellodi
  • Evelina Lamma
  • Riccardo Zese
  • Giuseppe Cota
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8816)

Abstract

We consider the problem of learning both the structure and the parameters of Probabilistic Description Logics under the DISPONTE semantics. DISPONTE is based on the distribution semantics for Probabilistic Logic Programming and assigns a probability to assertional and terminological axioms. The system EDGE, given a DISPONTE knowledge base (KB) and sets of positive and negative examples in the form of concept assertions, returns the value of the probabilities associated with axioms. We present the system LEAP that learns both the structure and the parameters of DISPONTE KBs explotiting EDGE. LEAP is based on the system CELOE for ontology engineering and exploits its search strategy in the space of possible axioms. LEAP uses the axioms returned by CELOE to build a KB so that the likelihood of the examples is maximized. We present experiments showing the potential of EDGE and LEAP.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann (1994)Google Scholar
  2. 2.
    Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for probabilistic ontologies. In: Uncertainty Reasoning for the Semantic Web. CEUR Workshop Proceedings, vol. 778, pp. 75–86. Sun SITE Central Europe (2011)Google Scholar
  3. 3.
    Bellodi, E., Riguzzi, F.: Experimentation of an expectation maximization algorithm for probabilistic logic programs. Intelligenza Artificiale 8(1), 3–18 (2012)Google Scholar
  4. 4.
    Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013)Google Scholar
  5. 5.
    Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by searching the clause space. Theory and Practice of Logic Programming FirstView Articles (to appear, 2014)Google Scholar
  6. 6.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: International Conference on Machine Learning, pp. 233–240. ACM (2006)Google Scholar
  7. 7.
    De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application in link discovery. In: International Joint Conference on Artificial Intelligence, vol. 7, pp. 2462–2467 (2007)Google Scholar
  8. 8.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)MATHMathSciNetGoogle Scholar
  9. 9.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman, R., et al. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. 9(1), 71–81 (2011)CrossRefGoogle Scholar
  12. 12.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78, 203–250 (2010)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Ochoa-Luna, J.E., Revoredo, K., Cozman, F.G.: Learning probabilistic description logics: a framework and algorithms. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 28–39. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Minervini, P., d’Amato, C., Fanizzi, N.: Learning probabilistic description logic concepts: Under different assumptions on missing knowledge. In: ACM Symposium on Applied Computing, pp. 378–383. ACM (2012)Google Scholar
  15. 15.
    Patel-Schneider, P.F., Horrocks, I., Bechhofer, S.: Tutorial on OWL (2003)Google Scholar
  16. 16.
    Riguzzi, F., Bellodi, E., Lamma, E.: Probabilistic Datalog+/- under the distribution semantics. In: International Workshop on Description Logics. CEUR Workshop Proceedings, vol. 846. Sun SITE Central Europe (2012)Google Scholar
  17. 17.
    Riguzzi, F., Bellodi, E., Lamma, E.: Probabilistic ontologies in Datalog+/-. In: Italian Conference on Computational Logic. CEUR Workshop Proceedings, vol. 857, pp. 221–235. Sun SITE Central Europe (2012)Google Scholar
  18. 18.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic ontologies. In: Uncertainty Reasoning for the Semantic Web. CEUR Workshop Proceedings, vol. 900, pp. 3–14. Sun SITE Central Europe (2012)Google Scholar
  19. 19.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: BUNDLE: a reasoner for probabilistic ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 183–197. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Computing instantiated explanations in OWL DL. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 397–408. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Parameter learning for probabilistic ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 265–270. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Learning the parameters of probabilistic description logics. In: Inductive Logic Programming Late Breaking papers. CEUR Workshop Proceedings, vol. 1187, pp. 46–51. Sun SITE Central Europe (2014)Google Scholar
  23. 23.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semantic Web - Interoperability, Usability, Applicability (to appear, 2014)Google Scholar
  24. 24.
    Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: Semantics and inference for probabilistic ontologies. In: Popularize Artificial Intelligence Workshop. CEUR Workshop Proceedings, vol. 860, pp. 41–46. Sun SITE Central Europe (2012)Google Scholar
  25. 25.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: International Conference on Logic Programming, pp. 715–729. MIT Press (1995)Google Scholar
  26. 26.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)CrossRefMATHGoogle Scholar
  27. 27.
    Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  28. 28.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)Google Scholar
  29. 29.
    Zese, R., Bellodi, E., Lamma, E., Riguzzi, F.: A description logics tableau reasoner in Prolog. In: Italian Conference on Computational Logic. CEUR Workshop Proceedings, vol. 1068, pp. 33–47. Sun SITE Central Europe (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fabrizio Riguzzi
    • 1
  • Elena Bellodi
    • 2
  • Evelina Lamma
    • 2
  • Riccardo Zese
    • 2
  • Giuseppe Cota
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversity of FerraraFerraraItaly
  2. 2.Dipartimento di IngegneriaUniversity of FerraraFerraraItaly

Personalised recommendations