Information Integration with Provenance on the Semantic Web via Probabilistic Datalog+/–

  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Livia Predoiu
  • Gerardo I. Simari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8816)


In this paper, we explore the use of guarded Datalog+/– for information integration based on probabilistic data exchange. The recently introduced Datalog+/– family of tractable ontology languages is suitable for representing and reasoning over lightweight ontologies, such as \(\mathcal {EL}\) and the DL-Lite family of description logics. We study how Datalog+/– can be used as a mapping language in the context of information integration. We also provide a complexity analysis for deciding the existence of (deterministic and probabilistic (universal)) solutions in the context of data exchange. In particular, we show that tractability is preserved for simple probabilistic representations, such as tuple-independent ones.


Mapping Language Conjunctive Query Query Answering Universal Solution Target Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the EU (FP7/2007-2013) Marie-Curie Intra-European Fellowship “PRODIMA”, the Engineering and Physical Sciences Research Council (EPSRC) grant EP/J008346/1 “PrOQAW: Probabilistic Ontological Query Answering on the Web”, the European Research Council (FP7/2007-2013/ERC) grant 246858 (“DIADEM”), and by a Yahoo! Research Fellowship.


  1. 1.
    Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. Philos. Logic 27(3), 217–274 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bernstein, P.A., Haas, L.M.: Information integration in the enterprise. Commun. ACM 9(51), 72–79 (2008)CrossRefGoogle Scholar
  3. 3.
    Botoeva, E.: Description Logic Knowledge Base Exchange. Ph.D. thesis, Free University of Bozen-Bolzano (2014)Google Scholar
  4. 4.
    Buneman, P.: The providence of provenance. In: Gottlob, G., Grasso, G., Olteanu, D., Schallhart, C. (eds.) BNCOD 2013. LNCS, vol. 7968, pp. 7–12. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive integrity constraints. In: Proceedings of KR, pp. 70–80. AAAI Press (2008)Google Scholar
  6. 6.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)CrossRefGoogle Scholar
  7. 7.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Rule-based approaches for representing probabilistic ontology mappings. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 66–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how and where. Found. Trends Databases 1(4), 379–474 (2009)CrossRefGoogle Scholar
  9. 9.
    Chiticariu, L., Tan, W.C.: Debugging schema mappings with routes. In: Proceedings of VLDB, pp. 79–90. ACM Press (2006)Google Scholar
  10. 10.
    Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: Proceedings of PODS, pp. 149–158. ACM Press (2008)Google Scholar
  11. 11.
    Dong, X.L., Halevy, A., Yu, C.: Data integration with uncertainty. VLDB J. 18, 469–500 (2009)CrossRefGoogle Scholar
  12. 12.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  13. 13.
    Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. In: Proceedings of ICDT, pp. 76–88. ACM Press (2010)Google Scholar
  14. 14.
    Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. J. ACM 58, 15 (2011)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: second-order dependencies to the rescue. ACM T. Database Syst. 30, 994–1055 (2005)CrossRefGoogle Scholar
  17. 17.
    Gal, A., Martinez, M.V., Simari, G.I., Subrahmanian, V.S.: Aggregate query answering under uncertain schema mappings. In: Proceedings of ICDE, pp. 940–951. IEEE Computer Society (2009)Google Scholar
  18. 18.
    Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under probabilistic uncertainty in Datalog+/- ontologies. Ann. Math. Artif. Intell. 69(1), 37–72 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of PODS, pp. 31–40. ACM Press (2007)Google Scholar
  20. 20.
    Green, T.J., Karvounarakis, G., Taylor, N.E., Biton, O., Ives, Z.G., Tannen, V.: ORCHESTRA: facilitating collaborative data sharing. In: Proceedings of SIGMOD, pp. 1131–1133. ACM Press (2007)Google Scholar
  21. 21.
    Haas, L.: Beauty and the beast: the theory and practice of information integration. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 28–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Johnson, D.S., Klug, A.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28, 167–189 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Karvounarakis, G.: Provenance in collaborative data sharing. Ph.D. thesis, University of Pennsylvania (2009)Google Scholar
  24. 24.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings of PODS, pp. 233–246. ACM Press (2002)Google Scholar
  25. 25.
    Levesque, H.J., Brachman, R.J.: Expressiveness and tractability in knowledge representation and reasoning. Comput. Intell. 3, 78–93 (1987)CrossRefGoogle Scholar
  26. 26.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Consistent answers in probabilistic Datalog+/– ontologies. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 156–171. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Lukasiewicz, T., Predoiu, L.: Information integration with provenance on the Semantic Web via probabilistic Datalog+/-. In: Proceedings of URSW. CEUR Workshop Proceedings (2013)Google Scholar
  28. 28.
    Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic description logic programs for representing ontology mappings. Ann. Math. Artif. Intell. 63(3/4), 385–425 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)CrossRefGoogle Scholar
  30. 30.
    Moreau, L., Groth, P.: Provenance: An Introduction to PROV. Morgan and Claypool, San Rafael (2013)Google Scholar
  31. 31.
    Niepert, M., Noessner, J., Meilicke, C., Stuckenschmidt, H.: Probabilistic-logical web data integration. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 504–533. Springer, Heidelberg (2011)Google Scholar
  32. 32.
    Scharffe, F., de Bruijn, J.: A language to specify mappings between ontologies. In: Proceedings of SITIS, pp. 267–271. Dicolor Press (2005)Google Scholar
  33. 33.
    Serafini, L., Stuckenschmidt, H., Wache, H.: A formal investigation of mapping language for terminological knowledge. In: Proceedings of IJCAI, pp. 576–581. Professional Book Center (2005)Google Scholar
  34. 34.
    ten Cate, B., Kolaitis, P.G.: Structural characterizations of schema-mapping languages. Commun. ACM 53, 101–110 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  • Maria Vanina Martinez
    • 1
  • Livia Predoiu
    • 1
  • Gerardo I. Simari
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations