Ontological CP-Nets

  • Tommaso Di Noia
  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Gerardo I. Simari
  • Oana Tifrea-Marciuska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8816)


Representing and reasoning about preferences is a key issue in many real-world scenarios in which personalized access to information is required. Many approaches have been proposed and studied in the literature that allow a system to work with qualitative or quantitative preferences; among the qualitative models, one of the most prominent are CP-nets. Their clear graphical structure unifies an easy representation of user preferences with good computational properties when computing the best outcome. In this paper, we show how to reason with CP-nets when the attributes modeling the knowledge domain are structured via an underlying domain ontology. We show how the computation of all undominated feasible outcomes of an ontological CP-net can be reduced to the solution of a constraint satisfaction problem, and study the computational complexity of the basic reasoning problems in ontological CP-nets.


Description Logic Constraint Satisfaction Problem Optimality Constraint Ontology Language Conditional Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the UK EPSRC grant EP/J008346/1 “PrOQAW: Probabilistic Ontological Query Answering on the Web”, by a Google European Doctoral Fellowship, by the ERC (FP7/2007-2013) grant 246858 (“DIADEM”), by a Yahoo! Research Fellowship, and by PON02_00563_3470993 (“VINCENTE”). This paper is a significantly extended and revised version of papers that appeared in Proceedings URSW-2013 [10] and Proceedings SUM-2013 [11].


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2002)Google Scholar
  2. 2.
    Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages, and back. In: Proceedings of KR, pp. 214–224. AAAI Press (2010)Google Scholar
  3. 3.
    Boubekeur, F., Boughanem, M., Tamine-Lechani, L.: Semantic information retrieval based on CP-nets. In: Proceedings of FUZZ-IEEE, pp. 1–7. IEEE Computer Society (2007)Google Scholar
  4. 4.
    Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proceedings of UAI, pp. 71–80. Morgan Kaufmann (1999)Google Scholar
  5. 5.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Preference-based constrained optimization with CP-nets. Comput. Intell. 20(2), 137–157 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference and importance. J. Artif. Intell. Res. 25(1), 389–424 (2006)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Brewka, G.: Preferences, contexts and answer sets. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 22–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Di Noia, T., Lukasiewicz, T.: Introducing ontological cp-nets. In: Proceedings of URSW, CEUR Workshop Proceedings, vol. 900, pp. 90–93. (2012)Google Scholar
  11. 11.
    Di Noia, T., Lukasiewicz, T., Simari, G.I.: Reasoning with semantic-enabled qualitative preferences. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 374–386. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Domshlak, C., Brafman, R.I.: CP-nets-reasoning and consistency testing. In: Proceedings of KR, pp. 121–132. Morgan Kaufmann (2002)Google Scholar
  13. 13.
    Domshlak, C., Prestwich, S.D., Rossi, F., Venable, K.B., Walsh, T.: Hard and soft constraints for reasoning about qualitative conditional preferences. J. Heuristics 12(4/5), 263–285 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview. Artif. Intell. 175(7/8), 1037–1052 (2011)CrossRefGoogle Scholar
  15. 15.
    French, S.: Decision Theory: An Introduction to the Mathematics of Rationality. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  16. 16.
    Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity of dominance and consistency in CP-nets. J. Artif. Intell. Res. 33, 403–432 (2008)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Govindarajan, K., Jayaraman, B., Mantha, S.: Preference logic programming. In: Proceedings of ICLP, pp. 731–745. MIT Press (1995)Google Scholar
  18. 18.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  21. 21.
    Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proceedings of VLDB, pp. 1–4. Morgan Kaufmann (1987)Google Scholar
  22. 22.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Preference-based query answering in Datalog\(+/-\) ontologies. In: Proceedings of IJCAI, pp. 1017–1023 (2013)Google Scholar
  23. 23.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I., Tifrea-Marciuska, O.: Preference-based query answering in probabilistic Datalog\(+/-\) ontologies. J. Data Semant. 1–21 (2014).
  24. 24.
    Lukasiewicz, T., Schellhase, J.: Variable-strength conditional preferences for ranking objects in ontologies. J. Web Sem. 5(3), 180–194 (2007)CrossRefGoogle Scholar
  25. 25.
    Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. J. Log. Lang. Inf. 14(3), 369–395 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Prestwich, S.D., Rossi, F., Venable, K.B., Walsh, T.: Constraint-based preferential optimization. In: Proceedings of AAAI, pp. 461–466. AAAI Press (2005)Google Scholar
  27. 27.
    Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition and application of preferences in database systems. ACM Trans. Database Syst. 36(3), 19 (2011)CrossRefGoogle Scholar
  29. 29.
    Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, RWTH Aachen, Germany (2001)Google Scholar
  30. 30.
    W3C: OWL 2 Web Ontology Language Primer (2nd Edition). W3C Recommendation, 11 December 2012.
  31. 31.
    W3C: OWL 2 Web Ontology Language Profiles. W3C Recommendation, 27 October 2009.
  32. 32.
    W3C: OWL Web Ontology Language Overview. W3C Recommendation, 10 February 2004.
  33. 33.
    Wang, H., Zhou, X., Chen, W., Ma, P.: Top-k retrieval using conditional preference networks. In: Proceedings of CIKM, pp. 2075–2079. ACM Press (2012)Google Scholar
  34. 34.
    Wilson, N.: Extending CP-nets with stronger conditional preference statements. In: Proceedings of AAAI, pp. 735–741. AAAI Press (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tommaso Di Noia
    • 1
  • Thomas Lukasiewicz
    • 2
  • Maria Vanina Martinez
    • 2
  • Gerardo I. Simari
    • 2
  • Oana Tifrea-Marciuska
    • 2
  1. 1.Department of Electrical and Information EngineeringPolytechnic University of BariBariItaly
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations