Skip to main content

Rhizosphere Microflora in Advocacy of Heavy Metal Tolerance in Plants

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

  • 2232 Accesses

Abstract

Heavy metals (HMs) when present in high concentrations are toxic to most plants. Excessive HM uptake by plants results in reduced growth since HMs disrupt cell plasma membrane, disintegrate cell organelles, and inhibit certain physiological and biochemical processes. HMs alter enzyme activity, denature proteins, and suppress protein synthesis. Exposure of plants to certain HM ions under toxic concentrations disrupts the equilibrium of free radical metabolism resulting in oxidative stress in plants. Rhizosphere microbial population helps plants in mitigating HM stress. Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) confer HM tolerance in plants. Also, these organisms help in phytoremediation of HM-contaminated sites by enhancing bioaccumulation and consequent sequestration of HMs in certain plants. High levels of HM may suppress or stimulate production of secondary metabolites in medicinal plants. HM-induced oxidative stress may result in altered titer and nature of plant secondary metabolites. The perspective role of the rhizosphere microflora in secondary metabolite production in HM stress-affected medicinal plants has not been studied yet. Pertinent features regarding the utilization of this strategy to enhance the bioactive compound production from plants growing in HM-contaminated sites have been discussed with emphasis on their safe use. The chapter also casts some light on the prospects of using AMF and PGPR in enhancing HM tolerance in plants, with special reference to medicinal ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

    CAS  Google Scholar 

  • Adriano DC (1986) Elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Aust SD, Marehouse CE, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radiat Biol Med 1:3–25

    Article  CAS  Google Scholar 

  • Bago B, Cano C, Azcón-Aguilar C et al (2004) Differential morphogenesis of the extraradical mycelium of an Arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96:452–462

    Article  PubMed  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants, heavy metal tolerance in plants. In: Shaw AJ (ed) Evolutionary aspects. CRC, Boca Raton, pp 155–177

    Google Scholar 

  • Barea J, Pozo M, Azkon-Aguillar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294

    Article  CAS  PubMed  Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soil 22:167–179

    Article  Google Scholar 

  • Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–671

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS, Goldsbrough PB (2000) Metal accumulating plants. In: Raskin Y, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Willey, Toronto, pp 247–270

    Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Cunningham RP (1997) DNA repair: caretakers of the genome? Curr Biol 7:576–579

    Article  Google Scholar 

  • Das K, Dang R, Shivananda TN, Sur P (2005) Interaction between phosphorus and zinc on the biomass yield and yield attributes of the medicinal plant Stevia (Stevia rebaudiana). Sci World J 10:390–395

    Article  Google Scholar 

  • Dwivedi S, Dey S (2002) Medicinal herbs: a potential source of toxic metal exposure for man and animals in India. Arch Environ Health 57:229–31

    Article  PubMed  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  CAS  PubMed  Google Scholar 

  • Ferrol N, Gonzàlez-Guerrero M, Valderas A, Benabdellah K, Azcon-Aguilar C (2009) Survival strategies of Arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559

    Article  CAS  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal containing domains. Mycol Res 107:861–871

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Galli U, Schuepp H, Brunold C (1995) Thiols of Cu-treated maize plants inoculated with the arbuscular-mycorrhizal fungus Glomus intraradices. Physiol Plant 94:247–53

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–34

    CAS  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. New Phytol 95:263–268

    Article  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–93

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  Google Scholar 

  • Gonzàlez-Chavez MC, Carrillo-Gonzàlez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–23

    Article  PubMed  Google Scholar 

  • Gonzàlez-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Google Scholar 

  • Gonzàlez-Guerrero M, Azcón-Aguilar C, Ferrol N (2006) GintABC1 and GintMT1 are involved in Cu and Cd homeostasis in Glomus intraradices. In: Abstracts of the 5th international conference on Mycorrhiza, Granada, Spain

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grejtovsky A, Markusova K, Eliasova A (2006) The response of chamomile (Matricaria chamomilla L.) plants to soil zinc supply. Plant Soil Environ 52:1–7

    Article  CAS  Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular Arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresour Technol 76:9–13

    Article  CAS  PubMed  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/ Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Kakosy T, Hudak A, Naray M (1996) Lead intoxication epidemic caused by ingestion of contaminated ground paprika. J Toxicol Clin Toxicol 34:507–511

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342

    Article  CAS  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, pp 359–402

    Chapter  Google Scholar 

  • Karthikeyan B, Manoharan MJ, Jaleel CA, Deiveekasundaram M (2010) Effect of root inoculation with plant growth promoting rhizobacteria (pgpr) on plant growth, alkaloid content and nutrient control of catharanthus roseus Nat Croat 19:205–212

    Google Scholar 

  • Kartosentono S, Suryawati S, Indrayanto G, Zaini NC (2002) Accumulation of Cd2+ and Pb2+ in the suspension cultures of Agave amaniensis and Costus speciosus and the determination of the culture’s growth and phytosteroid content. Biotechnol Lett 24:687–690

    Article  CAS  Google Scholar 

  • Kasparova M, Siatka T (2004) Abiotic elicitation of the explant culture of Rheum palmatum L. by heavy metals. Ceska Slov Farm 53:252–255

    CAS  PubMed  Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metal induced carcinogenesis. Cancer Invest 13:411–430

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Appl Microbiol 96:473–480

    Article  CAS  Google Scholar 

  • Khan MA, Ahmad I, Rahman I (2007) Effect of environmental pollution on heavy metals content of Withania somnifera. J Chinese Chem Soc 54:339–343

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Krishnamurti GSR, Cieslinski G, Huang PM, Van Rees KCJ (1997) Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J Environ Qual 26:271–277

    Article  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an Arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–20

    Article  CAS  PubMed  Google Scholar 

  • Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KT, Yamakawa T, Kodama T, Shimomura K (1998) Effects of chemicals on alkaloid production by transformed roots of belladonna. Phytochemistry 49:2343–2347

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–53

    Article  CAS  Google Scholar 

  • Lonergan DJ, Jenter H, Coates JD, Phillips EJP, Schmidt T, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(lll)-reducing bacteria. J Bacterial 176:2402–2408

    Google Scholar 

  • Lovley DR, Coates JD, Saffarini DA, Lonergan DJ (1997) Dissimilatory iron reduction. In: Winkelman G, Carrano CJ (eds) Iron and related transition metals in microbial metabolism. Harwood Academic Publishers, New York, pp 187–216

    Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Malcova R, Vosátka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Article  Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in contaminated soil, effect of arbuscular mycorrhiza fungi on zinc accumulation and histolocalization. Environ Pollut 145:691–699

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misra A (1992) Effect of zinc stress in Japanese mint as related to growth, photosynthesis, chlorophyll content and secondary plant products – the monoterpenes. Photosynthetica 26:225–234

    CAS  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Moons A (2003) Osgstu3 and osgstu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–32

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exp Bot 49:251–257

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 203:139–49

    CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Olujohungbe A, Fields PA, Sandford AF (1994) Heavy metal intoxication from homeopathic and herbal remedies. Postgrad Med J 70:764–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus – A phytoremediation study. J Environ Biol 28:655–662

    CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microbial Technol 26:252–258

    Article  CAS  Google Scholar 

  • Rai V, Khatoon S, Bisht SS, Mehrotra S (2005) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61:1644–1650

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr (vi) on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becerril F, Van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  CAS  PubMed  Google Scholar 

  • Roane TM, Pepper IL (2000) Microorganisms and metal pollution. In: Maier RM, Pepper IL, Gerba CB (eds) Environmental microbiology. Academic, London, p 55

    Google Scholar 

  • Rodriguez PB, Tome FV, Lozano JC (2002) About the assumption of linearity in soil-to-plant transfer factors for uranium and thorium isotopes and 226Ra. Sci Total Environ 284:167–75

    Article  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Sposito FG (2000) The chemistry of soils. In: Maier RM, Pepper IL, Gerba CB (eds) Environmental microbiology. Academic, London, p 406

    Google Scholar 

  • Street RA, Kulkarni MG, Stirk WA, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to hyacinthaceae. Bull Environ Contam Toxicol 79:371–376

    Article  CAS  PubMed  Google Scholar 

  • Thangavel S, Sevanan R, Nisha MC, Wondimu L, Mitiku T (2008) Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR's) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Mj. Int J Sci Tech 2:516–525

    Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Valcho DZ, Ekaterina AJ, Natasha K, Anatoli D (2008) Metal uptake by medicinal plant species grown in soils contaminated by a smelter. Environ Exp Bot 64:207–216

    Article  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 52:1523–1533

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M et al (2006) Identification of heavy metal-induced genes encoding glutathione S transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1–10

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ying F, He Z, Peter JS (2005) Molecular mechanisms of heavy metal hyperaccumulation and Phytoremediation. J Trace Elem Med Biol 18:339–35

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Wu M (2004) Cadmium treatment enhances the production of alkaloid secondary metabolites of Catharanthus roseus. Plant Sci 66:507–14

    Article  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    Article  CAS  Google Scholar 

  • Zhu L, Cullen WR (1995) Effects of some heavy metals on cell suspension cultures of Catharanthus roseus. J Environ Sci 7:60–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Upadhyay, S., Koul, M., Kapoor, R. (2015). Rhizosphere Microflora in Advocacy of Heavy Metal Tolerance in Plants. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_16

Download citation

Publish with us

Policies and ethics