Skip to main content

Human Gaze Tracking With An Active Multi-Camera System

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8897)

Abstract

This paper presents a framework for determining the direction of human gaze with an active multi-camera system. A fixed camera is employed in order to estimate the position of the human face and its features, like the eyes. By means of the Supervised Descent Method (SDM) for minimizing a Non-linear Least Squares (NLS) function we can compute correctly the position of the two eyes using 6 landmarks for each of them and the pose of the head. Then an active pan-tilt camera is oriented to one of the users eyes. This way a high precision gaze direction determination is accomplished.

Keywords

  • Eye tracking
  • Gaze tracking
  • Face tracking
  • Active camera
  • Pan-tilt camera

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13386-7_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13386-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marker detector with opencv (June 2013). https://sites.google.com/site/playwithopencv/home/markerdetect

  2. Baluja, S., Pomerleau, D.: Non-intrusive gaze tracking using artificial neural networks. Tech. rep, Pittsburgh, PA, USA (1994)

    Google Scholar 

  3. Boumbarov, O., Panev, S., Sokolov, S., Kanchev, V.: Ir based pupil tracking using optimized particle filter. In: IEEE International Workshop on IDAACS 2009 Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 404–408 (September 2009)

    Google Scholar 

  4. Bulling, A., Ward, J., Gellersen, H., Troster, G.: Eye movement analysis for activity recognition using electrooculography. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33(4), 741–753 (2011)

    CrossRef  Google Scholar 

  5. Gao, sX, Hou, X.R., Tang, J., Cheng, H.F.: Complete solution classification for the perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 930–943 (2003)

    CrossRef  Google Scholar 

  6. Hansen, D., Hansen, J., Nielsen, M., Johansen, A., Stegmann, M.: Eye typing using markov and active appearance models. In: Proceedings on Sixth IEEE Workshop on Applications of Computer Vision (WACV 2002). pp. 132–136 (2002)

    Google Scholar 

  7. Hansen, D., Ji, Q.: In the eye of the beholder: A survey of models for eyes and gaze. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(3), 478–500 (2010)

    CrossRef  Google Scholar 

  8. Hutchinson, T., White, Jr., K.P., Martin, W.N., Reichert, K., Frey, L.: Human-computer interaction using eye-gaze input. IEEE Transactions on Systems, Man and Cybernetics 19(6), 1527–1534 (1989)

    Google Scholar 

  9. Ishikawa, T., Baker, S., Matthews, I., Kanade, T.: Passive driver gaze tracking with active appearance models. Tech. Rep. CMU-RI-TR-04-08, Robotics Institute, Pittsburgh, PA (February 2004)

    Google Scholar 

  10. Jacob, R.J.K.: What you look at is what you get: Eye movement-based interaction techniques. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 11–18. ACM, New York (1990)

    Google Scholar 

  11. Khosravi, M.H., Safabakhsh, R.: Human eye sclera detection and tracking using a modified time-adaptive self-organizing map. Pattern Recognition 41(8), 2571–2593 (2008)

    CrossRef  Google Scholar 

  12. Kumar, M., Garfinkel, T., Boneh, D., Winograd, T.: Reducing shoulder-surfing by using gaze-based password entry. In: Proceedings of the 3rd Symposium on Usable Privacy and Security, pp. 13–19. ACM, New York (2007)

    Google Scholar 

  13. Kumar, M., Paepcke, A., Winograd, T.: Eyepoint: Practical pointing and selection using gaze and keyboard. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 421–430. CHI ’07, ACM, New York, NY (2007)

    Google Scholar 

  14. Kumar, M., Winograd, T.: Gaze-enhanced scrolling techniques. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 213–216. UIST 2007, ACM, New York, NY, USA (2007)

    Google Scholar 

  15. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley (2006)

    Google Scholar 

  16. Tan, K.H., Kriegman, D., Ahuja, N.: Appearance-based eye gaze estimation. In: Proceedings of Sixth IEEE Workshop on Applications of Computer Vision (WACV 2002), pp. 191–195 (2002)

    Google Scholar 

  17. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)

    CrossRef  Google Scholar 

  18. Williams, O., Blake, A., Cipolla, R.: Sparse and semi-supervised visual mapping with the s\(^3\)gp. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2006, vol. 1, pp. 230–237. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  19. Xiong, X., de la Torre, F.: Supervised descent method and its applications to face alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 532–539 (June 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Manolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Manolova, A., Panev, S., Tonchev, K. (2014). Human Gaze Tracking With An Active Multi-Camera System. In: Cantoni, V., Dimov, D., Tistarelli, M. (eds) Biometric Authentication. BIOMET 2014. Lecture Notes in Computer Science(), vol 8897. Springer, Cham. https://doi.org/10.1007/978-3-319-13386-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13386-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13385-0

  • Online ISBN: 978-3-319-13386-7

  • eBook Packages: Computer ScienceComputer Science (R0)