Skip to main content

Salicylic Acid and Drought Stress Response: Biochemical to Molecular Crosstalk

  • Chapter
Stress Responses in Plants

Abstract

Salicylic acid, a naturally occurring phenolic compound, is a multifaceted plant growth modulator and activates the systemic acquired defence in plants as a response to pathogen effect. In recent years in addition to the activation of SAR, SA is reported to play a major role in the modulation of plant responses to biotic and abiotic stresses like drought, salinity, heat, heavy metal stress, osmotic stress, defence against pathogenic elicitors and effectors and symbiotic relationships. Additionally, SA has well laid out physiological roles in growth and development of plants. Several of the targets of SA have been recognized, and the molecular mode of action elucidating the complex signal transduction and involving crosstalk of multiple metabolic pathways is being unravelled. This chapter deals with recent findings on the improvement of drought tolerance vis-à-vis salicylic acid-induced modulation of metabolic pathways and signalling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aftab T, Khan MMA, Idress M, Moinuddin MN (2010) Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J Crop Sci Biotech 13:183–188

    Google Scholar 

  • Ahmadi AA (1998) Effect of post-anthesis water stress on yield regulating processes in wheat (Triticum aestivum L.). Ph.D. Thesis, University of London, Wye College, Wye, Ashford

    Google Scholar 

  • Alves AAC, Setter TL (2004) Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann Bot 94:605–613

    PubMed Central  PubMed  Google Scholar 

  • Ananieva EA, Alexieva VS, Popova LP (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693

    CAS  Google Scholar 

  • Anderson MD, Chen Z, Klessig DF (1998) Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochemistry 47:555–566

    CAS  Google Scholar 

  • Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003a) Water stress in barley (Hordeum vulgare L.). I. Effect on morphological characters. Pakistan J Agric Sci 40:43–44

    Google Scholar 

  • Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003b) Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pakistan J Agric Sci 40:45–49

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Azevedo H, Lino-Neto T, Tavares RM (2004) Salicylic acid up-regulates the expression of chloroplastic Cu, Zn-superoxide dismutase in needles of maritime pine (Pinus pinaster Ait.). Ann For Sci 61:847–850

    CAS  Google Scholar 

  • Azooz MM, Youssef MM (2010) Evaluation of heat shock and salicylic acid treatments as inducer of drought stress tolerance in Hassawi wheat. Am J Plant Physiol 5:56–70

    CAS  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    CAS  Google Scholar 

  • Bassett AS, Chow EWC, Husted J, Weksberg R, Caluseriu O, Webb GD (2005) Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet 138A:307–313

    Google Scholar 

  • Bezrukova MV, Sakhabutdinova AR, Fatkhutdinova RA, Kildrirova I, Shakirova RM (2001) Effect of salicylic acid on root hormone content and the growth of wheat sprouts under water deficit. Agrochemya 2:51–54

    Google Scholar 

  • Bhatt RM, Srinivasa Rao NK (2005) Influence of pod load response of okra to water stress. Indian J Plant Physiol 10:54–59

    Google Scholar 

  • Bota J, Flexas J, Medrano H (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    CAS  Google Scholar 

  • Chai TY, Zhang YX (1999) Gene expression analysis of a proline-rich protein from bean under biotic and abiotic stress. Acta Bot Sin 41:111–113

    CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993a) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1885

    CAS  PubMed  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993b) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    CAS  PubMed  Google Scholar 

  • Chen Z, Iyer S, Caplan A, Klessig DF, Fan B (1997) Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiol 114:193–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    CAS  PubMed  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci U S A 92:7143–7147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dat JF, Foyer CH, Scote IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci 40:1257–1263

    Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31:1129–1138

    CAS  Google Scholar 

  • Drame KN, Clavel D, Repellin A, Passaquet C, Zuily-Fodil Y (2007) Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought. Plant Physiol Biochem 45:236–243

    CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

    CAS  PubMed  Google Scholar 

  • El-Basyouni SD, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) Biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A 89:2480–2484

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress, effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Ganesan V, Thomas G (2001) Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci 160:1095–1106

    CAS  PubMed  Google Scholar 

  • Glass ADM (1973) Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake. Plant Physiol 51:1037–1041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids on ion uptake. III. Inhibition of potassium absorption. J Exp Bot 25:1104–1113

    CAS  Google Scholar 

  • Gressel J, Salun E (1994) Genetic controls of photooxidant tolerance. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, FL, pp 237–274

    Google Scholar 

  • Hamada AM (1998) Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 4. Kluwer Academic, Dordrecht, pp 2581–2584

    Google Scholar 

  • Hamada AM, Al-Hakimi AMA (2001) Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rostl Vyr 47:444–450

    CAS  Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedlings. J Integr Plant Biol 50:435–442

    CAS  PubMed  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L, Tuong TP, Lopes K, Hardy B (eds) Direct seeding: Research Strategies and Opportunities. International Research Institute, Manila, Philippines, pp 231–240

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Fujita M (2013) Drought stress responses in plants, oxidative stress, and antioxidant defense, in climate change and plant abiotic stress tolerance. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley-VCH, Weinheim. doi:10.1002/9783527675265.ch09

    Google Scholar 

  • He CY, Zhang JS, Chen SY (2002) A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Gen 104:1125–1131

    CAS  Google Scholar 

  • Hettiarachchi GHCM, Reddy MK, Sopory SK, Chattopadhyay S (2005) Regulation of TOP2 by various abiotic stresses including cold and salinity in pea and transgenic tobacco plants. Plant Cell Physiol 46:1154–1160

    CAS  PubMed  Google Scholar 

  • Holk A, Rietz S, Zahn M, Quader H, Scherer GFE (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Horváth E, Janda T, Szalai G, Páldi E (2002) In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci 163:1129–1135

    Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59(11):2991–3007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    CAS  Google Scholar 

  • Iuchi S, Yamaguchi-Shinozaki K, Urao T, Shinozaki K (1996) Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. J Plant Res 109:415–424

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008a) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comp Rend Biol 331:42–47

    Google Scholar 

  • Jaleel CA, Gopi R, Panneerselvam R (2008b) Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. Comp Rend Biol 331:272–277

    Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008c) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comp Rend Biol 331:42–47

    Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008d) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf B 61:298–303

    CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Murali PV, Gomathinayagam M, Panneerselvam R (2008e) Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloids Surf B 62:312–318

    CAS  Google Scholar 

  • Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R (2008f) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids Surf B 62:105–111

    CAS  Google Scholar 

  • Jang CS, Lee HJ, Chang SJ, Seo YW (2004) Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci 167:995–1001

    CAS  Google Scholar 

  • Johansen C, Baldev B, Brouwer JB, Erskine W, Jermyn WA, Li- Juan L, Malik BA, Ahad Miah A, Silim SN (1992) Biotic and abiotic stresses constraining productivity of cool season food legumesin Asia, Africa and Oceania. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the Production and Use of Cool Season Food Legumes. Kluwer Academic, Dordrecht, pp 75–194

    Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Google Scholar 

  • Jones HG, Jones MB (1989) Introduction: some terminology and common mechanisms. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 1–10

    Google Scholar 

  • Kader JC (1996) Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:27–654

    Google Scholar 

  • Kang H, Saltveit ME (2001) Activity of enzymatic antioxidant defence systems in chilled and heat shocked cucumber seedling radicals. Plant Physiol 113:548–556

    CAS  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y et al (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    CAS  PubMed  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57(4):718–724

    CAS  Google Scholar 

  • Kim H, Mun JH, Byun BH, Hwang HJ, Kwon YM, Kim SG (2002) Molecular cloning and characterization of the gene encoding osmotin protein in Petunia hybrida. Plant Sci 162:745–752

    CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signalling in plant defence. Proc Natl Acad Sci U S A 97:8849–8855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kling GJ, Meyer MM (1983) Effect of phenolic compounds and indoleacetic acid on adventitious root initiation in cuttings of Phaseolus aureus, Acer saccharinum and Acer griseum. Hort Sci 18:352–354

    CAS  Google Scholar 

  • Koda V, Koshi T, Kikuta Y (1992) Potato tuber inducing activities of salicylic acid and related compounds. Plant Growth Regul 11:215–219

    CAS  Google Scholar 

  • Kundu S, Chakraborty D, Pal A (2011) Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. J Proteomics 74(3):337–349

    CAS  PubMed  Google Scholar 

  • Kundu S, Chakraborty D, Pal A (2012) Salicylic acid ameliorates susceptible Vigna mungo cultivar to Mungbean yellow mosaic India virus infection. Sci Cult 78(5–6):217–226

    Google Scholar 

  • Kundu S, Chakraborty D, Kundu A, Pal A (2013a) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. BMC Proteome Sci 11:15

    CAS  Google Scholar 

  • Kundu A, Patel A, Pal A (2013b) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep DOI. doi:10.1007/s00299-013-1478-2

    Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    CAS  Google Scholar 

  • Lake JA, Woodward FI, Quick WP (2002) Long-distance CO2 signalling in plants. J Exp Bot 53:183–193

    CAS  PubMed  Google Scholar 

  • Larque-Saavedra A (1978) The antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris L. Physiol Plant 43:126–128

    CAS  Google Scholar 

  • Larque-Saavedra A (1979) Stomatal closure in response to acetylsalicylic acid treatments. Z Pflanzenphysiol 93:371–375

    CAS  Google Scholar 

  • Lee SC, Hwang BK (2003) Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta 216:387–396

    CAS  PubMed  Google Scholar 

  • Lee H, León J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li ZG, Zhao LX, Kai GY, Yu SW, Cao YF, Pang YZ, Sun XF, Tang KX (2004) Cloning and expression analysis of a water stress-induced gene from Brassica oleracea. Plant Physiol Biochem 42:789–794

    CAS  PubMed  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:943–1945

    Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–72

    CAS  PubMed  Google Scholar 

  • Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2- metabolizing enzyme activities. Plant Sci 161:125–132

    CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    CAS  PubMed  Google Scholar 

  • MansWeld TJ, Atkinson CJ (1990) Stomatal behaviour in water stressed plants. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 241–264

    Google Scholar 

  • Martínez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, wall elasticity and cell volume in six cultivars of beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38

    Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    CAS  PubMed  Google Scholar 

  • Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Miura Y, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci. doi:10.3389/fpls.2014.00004

    PubMed Central  PubMed  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481

    CAS  PubMed  Google Scholar 

  • Moussa HR, EI-Gamel SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54:315–320

    CAS  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 120:509–518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    CAS  PubMed  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    CAS  Google Scholar 

  • Pancheva TV, Popova LP (1998) Effect of salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 152:381–386

    CAS  Google Scholar 

  • Pathan MS, Lee JD, Shannon JG, Nguyen HT (2007) Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, pp 739–773

    Google Scholar 

  • Petropoulos SA, Dimitra Daferera MG, Polissiou PHC (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hort 115:393–397

    CAS  Google Scholar 

  • Popova L, Pancheva T, Uzunova A (1997) Salicylic acid: Properties, biosynthesis and physiological role. Bulg J Plant Physiol 23:85–93

    CAS  Google Scholar 

  • Prabhudeva TV, Chalapathi MM, Thimmegowda S, Devakhumar N, Rao GG, Mallikarjuna K (1998) Soil moisture stress and drought susceptibility index in sunflower. Indian Agric 42:287–289

    Google Scholar 

  • Qi YH, Kawano N, Yamauchi Y, Ling JQ, Li DB, Tanaka K (2005) Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. Planta 221:437–445

    CAS  PubMed  Google Scholar 

  • Rakwal R, Agraval GK, Agraval VP (2001) Jasmonate, salicylate, protein phophatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryza sativa). J Plant Physiol 158:1357–1362

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raskin I (1992a) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raskin I (1992b) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci U S A 86:2214–2218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and nonthermogenic plants. Ann Bot 66:376–383

    Google Scholar 

  • Rietz S, Holk A, Scherer GFE (2004) Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency. Planta 219:743–753

    CAS  PubMed  Google Scholar 

  • Rüffer M, Steipe B, Zenk MH (1995) Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett 377:175–180

    PubMed  Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114:519–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salentijn EMJ, Pereira A, Angenent GC, Van der Linden CG, Krens F, Smulders MJM, Vosman B (2007) Plant translational genomics: from model species to crops. Mol Breed 20:1–13

    Google Scholar 

  • Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late-terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195:427–441

    Google Scholar 

  • Sánchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1679

    PubMed Central  PubMed  Google Scholar 

  • Sang HL, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 64:1626–1638

    Google Scholar 

  • Senaratna T, Touchell D, Bunn T, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Abdul C, Jaleel H-MM (2008) Higher plant antioxidants and redox signaling under environmental stresses. Comp Rend Biol 331:433–441

    CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco environment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    CAS  PubMed  Google Scholar 

  • Shen Y, Tang MJ, Hu YL, Lin ZP (2004) Isolation and characterization of a dehydrin-like gene from drought-tolerantBoea crassifolia. Plant Sci 166:1167–1175

    CAS  Google Scholar 

  • Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z (2014) The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis1. Plant Physiol 165(3):1367–1379

    CAS  PubMed  Google Scholar 

  • Shunwu YW, Zhang LD, Zuo KJ, Li ZG, Tang KX (2004) Isolation and characterization of a BURP domain-containing gene BnBDC1 from Brassica napus involved in abiotic and biotic stress. Physiol Plant 122:210–218

    Google Scholar 

  • Singh G, Kaur M (1980) Effect of growth regulators on podding and yield of mung bean (Vigna radiata L.). Ind J Plant Physiol 23:366–370

    Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin 1. A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Comm 320:523–530

    CAS  PubMed  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water. A QTL analysis of drought tolerance. Crop Sci 41:493–509

    CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    CAS  PubMed  Google Scholar 

  • Subbarao GV, Johansen C, Slinkard AE, Nageswara Rao RC, Saxena NP, Chauhan YS, Lawn RJ (1995) Strategies for improving drought resistance in grain legume. Crit Rev Plant Sci 14:469–523

    Google Scholar 

  • Tahir MHN, Imran M, Hussain MK (2002) Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agric Biol 3:398–400

    Google Scholar 

  • Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R (2006) Barley transcript profiles under dehydration shock and drought stress treatments, a comparative analysis. J Exp Bot 58:229–240

    PubMed  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:404–411

    Google Scholar 

  • Turner NC (1986) Crop water deficits, a decade of progress. Advances Agron 39:1–51

    Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    CAS  PubMed  Google Scholar 

  • Vicente MR-S, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. doi:10.1093/jxb/err031

    Google Scholar 

  • Volt AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol l47:177–206

    Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34–34

    PubMed Central  PubMed  Google Scholar 

  • Webber M, Barnett J, Finlayson B, Wang M. 2006. Pricing China’s irrigation water. Working paper, School of Anthropology, Geography and Environmental Studies, The University of Melbourne, VIC, Australia

    Google Scholar 

  • Wendehenne D, Durner J, Chen Z, Klessig DF (1998) Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry 47:651–657

    CAS  Google Scholar 

  • Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    CAS  PubMed  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Google Scholar 

  • Wullschleger SD, Yin TM, DiFazio SP, Tschaplinski TJ, Gunter LE, Davis MF, Tuskan GA (2005) Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Can J For Res 35:1779–1789

    CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    CAS  PubMed  Google Scholar 

  • Xing Y, Jiang W, Zhang J (2008) atMKK1 mediates ABA-induced CAT1 expression and H2O2 production via atMPk6-coupled signaling in Arabidopsis. Plant J 54:440–451

    CAS  PubMed  Google Scholar 

  • Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    CAS  PubMed  Google Scholar 

  • Zhang M, Duan L, Zhai Z, Li J, Tian X, Wang B, He Z, Li Z (2004) Effects of plant growth regulators on water deficit-induced yield loss in soybean. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia

    Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transinactive DRE binding factors in Brassica napus. J. Biol Chem 281:10752–10759

    CAS  Google Scholar 

  • Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci U S A 98:6516–6521

    Google Scholar 

Download references

Acknowledgements

The authors thank Professor Aditya Shastri, Vice Chancellor, Banasthali Vidyapith, India, for providing the necessary facilities. The work is funded through a UGC, Govt. of India, major research project grant to D.C. S.P. thankfully acknowledge UGC, Govt. of India, for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipjyoti Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pandey, S., Chakraborty, D. (2015). Salicylic Acid and Drought Stress Response: Biochemical to Molecular Crosstalk. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_10

Download citation

Publish with us

Policies and ethics