Skip to main content

Cave Environments

  • Chapter
  • First Online:

Abstract

Caves and other associated subterranean habitats represent some of the most challenging environments on Earth. Despite many significant abiotic and biotic obstacles to overcome, most notably the complete absence of light, several groups of fishes thrive in subterranean habitats. The aim of this chapter is to provide a broad yet thorough review of our current knowledge regarding fish adaptations to one of the most extreme habitats on the planet. We begin our chapter by providing an overview of subterranean habitats, focusing on caves, and the major constraints cavefishes must overcome to live in such environments in complete darkness with limited food resources. We then provide an overview of taxonomic diversity and geographic distribution of cavefishes with a brief discussion of syntopy of cavefishes in subterranean habitats. Next we summarize what is known about the physiological, behavioral, and morphological adaptations that have evolved in cavefishes in response to the primary physicochemical and ecological stressors in subterranean habitats. In particular, we focus on adaptations associated with nonvisual sensory modalities. Finally, we offer a few suggestions for avenues of future research in cavefish adaptation and sensory evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aumiller SR, Noltie DB (2003) Chemoreceptive responses of the southern cavefish Typhlichthys subterraneus Girard, 1860 (Pisces, Amblyopsidae) to conspecifics and prey. Subterranean Biology 1:79–92

    Google Scholar 

  • Banister KE, Bunni MK (1980) A new blind cyprinid fish from Iraq. Bull Br Mus Nat Hist (Zool) 38:151–158

    Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Systemat 16:313–337

    Google Scholar 

  • Berti R, Zorn L (2001) Locomotory responses of the cave cyprinid Phreatichthys andruzzii to chemical signals from conspecifics and related species: new findings. Environ Biol Fishes 62:107–114

    Google Scholar 

  • Bibliowicz J, Alie A, Espinasa L, Yoshizawa M, Blin M, Hinaux H, Legendre L, Pere S, Reaux S (2013) Differences in chemosensory response between eyed and eyeless Astyanax mexicanus of the Rio Subterráneo cave. EvoDevo 4:25

    PubMed Central  PubMed  Google Scholar 

  • Bichuette MA, Trajano E (2006) Morphology and distribution of the cave knifefish Eigenmannia vicentespelaea Triques, 1996 (Gymnotiformes: Sternopygidae) from central Brazil, with an expanded diagnosis and comments on subterranean evolution. Neotropical Ichthyology 4:99–105

    Google Scholar 

  • Bilandzija H, Ma L, Parkhurst A, Jeffery WR (2013) A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One 8:e80823

    PubMed Central  PubMed  Google Scholar 

  • Biswas J, Pati AK, Pradhan RK (1990) Circadian and circannual rhythms in air gulping behavior of cave fish. J Interdiscipl Cycle Res 21:257–268

    Google Scholar 

  • Borowsky R (2010) The evolutionary genetics of cave fishes: convergence, adaptation and pleiotropy. In: Trajano E, Bichuette ME, Kapoor BG (eds) Biology of subterranean fishes. Science Publishers, Enfield, NH, pp 141–168

    Google Scholar 

  • Borowsky R, Cohen D (2013) Genomic consequences of ecological speciation in Astyanax cavefish. PLoS One 8:e79903

    PubMed Central  PubMed  Google Scholar 

  • Borowsky R, Wilkens H (2002) Mapping a cavefish genome: polygenic systems and regressive evolution. J Hered 93:19–21

    CAS  PubMed  Google Scholar 

  • Boudriot F, Reutter K (2001) Ultrastructure of the taste buds in the blind cave fish Astyanax jordani (“Anoptichthys”) and the sighted river fish Astyanax mexicanus (Teleostei, Characidae). J Comp Neurol 434:428–444

    CAS  PubMed  Google Scholar 

  • Bradic M, Beerli P, Garcia-de Leon FJ, Esquivel-Bobadilla S, Borowsky RL (2012) Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 12:9

    PubMed Central  PubMed  Google Scholar 

  • Cahn PH (1958) Comparative optic development in Astyanax mexicanus and two of its blind cave derivatives. Bull Am Mus Nat Hist 115:75–112

    Google Scholar 

  • Caine EA (1978) Comparative ecology of epigean and hypogean crayfish (Crustacea: Cambaridae) from northwestern Florida. Am Midl Nat 99:315–329

    Google Scholar 

  • Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda JF, Foà A, Berti R, Sánchez-Vázquez FJ, Bertolucci C, Foulkes NS (2011) A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol 9:e1001142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceccolini F, Paglianti A, Streitenberger C, Berti R (2010) Can chemical cues act as landmarks in the orientation of the cave fish Phreatichthys andruzzii? Can J Zool 88:884–888

    CAS  Google Scholar 

  • Chakrabarty P, Prejean JA, Niemiller ML (2014) The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana. ZooKeys 412:41–57

    PubMed  Google Scholar 

  • Christiansen KA (1962) Proposition pour la classification des animaux cavernicoles. Speluna 2:75–78

    Google Scholar 

  • Colli L, Pagalianti A, Berti R, Gandolfi G, Tagliavini J (2009) Molecular phylogeny of the blind cavefish Phreatichthys andruzzii and Garra barreimiae within the family Cyprinidae. Environ Biol Fishes 84:95–107

    Google Scholar 

  • Coombs S, Janssen J, Webb J (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, NY, pp 553–593

    Google Scholar 

  • Cordiner S, Morgan E (1991) Endogenous locomotor activity patterns in the blind Mexican cave fish Astyanax mexicanus. J Interdiscipl Cycle Res 22:103

    Google Scholar 

  • Culver DC (1982) Cave life. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Culver DC (2005) Life history evolution. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, London, pp 346–349

    Google Scholar 

  • Culver DC, Pipan T (2008) Superficial subterranean habitats–gateway to the subterranean realm? Cave Karst Sci 35:5–12

    Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Pipan T, Gottstein S (2006) Hypotelminorheic – a unique freshwater habitat. Subterranean Biology 4:1–8

    Google Scholar 

  • Dijkgraaf S (1962) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    Google Scholar 

  • Duboue ER, Keene AC, Borowsky RL (2011) Evolutionary convergence on sleep loss in cavefish populations. Curr Biol 21:671–676

    CAS  PubMed  Google Scholar 

  • Eigenmann CH (1909) Cave vertebrates of America, vol 104. Carnegie Institute of Washington, Washington, DC, pp 1–241

    Google Scholar 

  • Erckens W, Weber F (1976) Rudiments of an ability for time measurement in the cavernicolous fish Anoptichthys jordani Hubbs and Innes (Pisces Characidae). Experientia 32:1297–1299

    CAS  PubMed  Google Scholar 

  • Ercolini A, Berti R, Chelazzi L, Messana G (1982) Researches on the phreatobic fishes of Somalia: achievements and prospects. Monit Zool Ital Suppl 17:219–241

    Google Scholar 

  • Espinasa L, Jeffery WR (2006) Conservation of retinal circadian rhythms during cavefish eye degeneration. Evol Dev 8:16–22

    PubMed  Google Scholar 

  • Felice V, Visconti MA, Trajano E (2008) Mechanisms of pigmentation loss in subterranean fishes. Neurotrop Ichthyol 6:657–662

    Google Scholar 

  • Fenolio DB, Zhao Y, Niemiller ML, Stout JF (2013) In-situ observations of seven enigmatic cave loaches and one cave barbel from Guangxi, China, with notes on conservation status. Speleobiology Notes 5:19–33

    Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex

    Google Scholar 

  • Gannon AT, Demarco VG, Morris T, Wheatly MG, Kao Y (1999) Oxygen uptake, critical oxygen tension, and available oxygen for three species of cave crayfishes. J Crustacean Biol 19:235–243

    Google Scholar 

  • Garcia-Machado E, Hernandez D, Garcia-Debras A, Chevalier-Monteagudo P, Metcalfe C, Bernatchez L, Casane D (2011) Molecular phylogeny and phylogeography of the Cuban cave-fishes of the genus Lucifuga: evidence for cryptic allopatric diversity. Mol Phlyogenet Evol 61:470–483

    Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481

    Google Scholar 

  • Gross JB (2012) The complex origin of Astyanax cavefish. BMC Evol Biol 12:105

    PubMed Central  PubMed  Google Scholar 

  • Gross JB, Wilkens H (2013) Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele. Heredity 111:122–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gross JB, Borowsky R, Tabin CJ (2009) A novel role for MC1R in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet 5:e1000326

    PubMed Central  PubMed  Google Scholar 

  • Haspel G, Schwartz A, Streets A, Camacho DE, Soares D (2012) By the teeth of their skin, cavefish find their way. Curr Biol 22:R629–R630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holsinger JR (1988) Troglobites: the evolution of cave-dwelling organisms. Am Sci 76:747–760

    Google Scholar 

  • Holsinger JR (1993) Biodiversity of subterranean amphipod crustaceans: global patterns and zoogeographic implications. J Nat Hist 27:821–835

    Google Scholar 

  • Holsinger JR (2000) Ecological derivation, colonization, and speciation. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30. Elsevier, Oxford, pp 399–415

    Google Scholar 

  • Hooven TA, Yamamoto Y, Jeffery WR (2004) Blind cavefish and heat shock protein chaperones: a novel role for hsp90α in lens apoptosis. Int J Dev Biol 48:731–738

    CAS  PubMed  Google Scholar 

  • Howarth FG (1973) The cavernicolous fauna of Hawaiian lava tubes. I. Introduction. Pac Insect 15:139–151

    Google Scholar 

  • Howarth FG (1981) Non-relictual terrestrial troglobites in the tropic Hawaiian caves. Proceedings of the 8th international congress of speleology (Bowling Green, Kentucky) 2:539–541

    Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Ecol Syst 28:365–389

    Google Scholar 

  • Howarth FG (1987) The evolution of non-relictual tropical troglobites. Int J Speleol 16:1–16

    Google Scholar 

  • Huntman BM, Venarsky MP, Benstead JP, Huryn AD (2011) Effects of organic matter availability on the life history and production of a top vertebrate predator (Plethodontidae: Gyrinophilus palleucus) in two cave streams. Freshw Biol 56:1746–1760

    Google Scholar 

  • Hüppop K (1986) The role of metabolism in the evolution of cave animals. Natl Speleol Soc Bull 47:136–146

    Google Scholar 

  • Hüppop K (1987) Food finding ability in cave fish (Astyanax fasciatus). Int J Speleol 16:59–66

    Google Scholar 

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, Netherlands, pp 159–188

    Google Scholar 

  • Iliffe TM (1993) Fauna troglobia acu’atica de la Peninsula de Yucatan. In: Salazar-Vallejo SI, Gonzalez NE (eds) Biodiversidad Marina y Costera de Mexico. Com. Nal. Biodiversidad Y CIQRO, Mexico, pp 673–686

    Google Scholar 

  • Jeannel R (1926) Faune cavernicole de la France avec une etude des conditions d’existence dans le domaine souterrain. Lechevalier, Paris. 334 pp

    Google Scholar 

  • Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. Dev Biol 231:1–12

    CAS  PubMed  Google Scholar 

  • Jeffery WR (2008) Emerging model systems in evo-devo: cavefish and microevolution of development. Evol Dev 10:265–272

    PubMed Central  PubMed  Google Scholar 

  • Jeffery WR (2009) Regressive evolution in Astyanax cavefish. Annu Rev Genet 43:25–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juberthie C, Decu V (1994) Structure et diversite du domaine souterrain; particularites des habitats et adaptations des especes. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome 1. Societe Internationale de Biospeologie, Moulis, France, pp 5–22

    Google Scholar 

  • Juberthie C, Decu V (1998) Encyclopedia Biospeologica, Tome 2. Societe Internationale de Biospeologie, Moulis, France

    Google Scholar 

  • King RA, Willaert RK, Schmidt RM, Pietsch J, Savage S (2003) MC1R mutations modify the class phenotypes of oculocutaneous albinism type 2 (OCA2). Am J Hum Genet 73:638–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langecker TG, Longley G (1993) Morphological adaptations of the Texas blind catfishes Trogloglanis pattersoni and Satan eurystomus (Siluriformes: Ictaluridae) to their underground environment. Copeia 1993:976–986

    Google Scholar 

  • Langecker TG, Schmale H, Wilkens H (1993) Transcription of the opsin gene in degenerate eyes of cave dwelling Astyanax fasciatus (Teleostei, Characidae) and its conspecific ancestor during early ontogeny. Cell Tissue Res 273:183–192

    Google Scholar 

  • Langecker TG, Wilkens H, Parzefall J (1996) Studies on the trophic structure of an energy-rich Mexican cave (Cueva de las Sardinas) containing sulfurous water. Memoires de Biospeologie 23:121–125

    Google Scholar 

  • Li C, Lu G, Orti G (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst Biol 57:519–539

    PubMed  Google Scholar 

  • Liang XF, Cao L, Zhang CG (2011) Molecular phylogeny of the Sinocyclocheilus (Cypriniformes: Cyprinidae) fishes in northwest part of Guangxi, China. Environ Biol Fishes 92:371–379

    Google Scholar 

  • Lohmann KJ, Johnsen S (2000) The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci 23:153–159

    CAS  PubMed  Google Scholar 

  • Longley G, Karney H (1979) Status of Trogloglanis pattersoni Eigenmann, the toothless blindcat and status of Satan eurystomus Hubbs and Bailey, the widemouth blindcat. Endangered Species Report 5 (Part 1), Special Publication, U.S. Fish and Wildlife Service, Albuquerque. 54 pp

    Google Scholar 

  • Mercy TVA, Padmanabhan KG, Pillai NK (1982) Morphological studies of the oocytes of the blind catfish Horaglanis krishnai Menon. Zool Anz 209:211–223

    Google Scholar 

  • Mestrov M (1962) Un nouveau milieu aquatique souterrain: le biotype hypotelminorheique, vol 254. Compte Rendus Academie des Sciences, Paris, pp 2677–2679

    Google Scholar 

  • Mohr CE, Poulson TL (1966) The life of the cave. McGraw-Hill, New York, NY

    Google Scholar 

  • Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environ Biol Fishes 62:87–96

    Google Scholar 

  • Niemiller ML, Poulson TL (2010) Studies of the Amblyopsidae: past, present, and future. In: Trajano E, Bichuette ME, Kapoor BG (eds) The biology of subterranean fishes. Science Publishers, Enfield, NH, pp 169–280

    Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Miller BT (2008) Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Mol Ecol 17:2258–2275

    CAS  PubMed  Google Scholar 

  • Niemiller ML, Near TJ, Fitzpatrick BM (2012) Delimiting species using multilocus data: diagnosing cryptic diversity in the southern cavefish Typhlichthys subterraneus (Teleostei: Amblyopsidae). Evolution 66:846–866

    PubMed  Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L, Near TJ (2013a) Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 67:732–748

    CAS  PubMed  Google Scholar 

  • Niemiller ML, Higgs DM, Soares D (2013b) Evidence for hearing loss in amblyopsid cavefishes. Biol Lett 9:20130104

    PubMed Central  PubMed  Google Scholar 

  • Niemiller ML, McCandless JR, Reynolds RG, Caddle J, Tilquist CR, Near TJ, Pearson WD, Fitzpatrick BM (2013c) Effects of climatic and geological processes during the Pleistocene on the evolutionary history of the northern cavefish, Amblyopsis spelaea (Teleostei: Amblyopsidae). Evolution 67:1011–1025

    PubMed  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Google Scholar 

  • Paglianti A, Messana G, Cianfanelli A, Berti R (2006) Is the perception of their own odour effective in orienting the exploratory activity of cave fishes? Can J Zool 84:871–876

    Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, OH

    Google Scholar 

  • Parzefall J (2001) A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. Environ Biol Fishes 62:263–275

    Google Scholar 

  • Pati AK (2001) Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. Environ Biol Fishes 62:119–129

    Google Scholar 

  • Patton P, Windsor S, Coombs S (2010) Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol A 196:853–867

    Google Scholar 

  • Peck SB, Finston TL (1993) Galapagos Islands troglobites: the questions of tropical troglobites, parapatric distributions with the eyed-sister-species, and their origin by parapatric speciation. Memoires de Biospeologie 20:19–37

    Google Scholar 

  • Peters N, Schacht V, Schmidt W, Wilkens H (1993) Gehirnproportionen und Ausprägungsgrad der Sinnesorgane von Astyanax mexicanus (Pisces, Characinidae): Ein Vergleich zwischen dem Fluβfisch und seinen Höhlenderivaten «Anoptichthys». J Zool Syst Evol Res 31:144–159

    Google Scholar 

  • Plath M, Parzelfall J, Schlupp I (2003) The role of sexual harassment in cave– and surface–dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309

    Google Scholar 

  • Plath M, Hermann B, Schroder C, Riesch R, Tobler M, Garcia de Leon FJ, Schlupp I, Tiedemann R (2010) Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evol Biol 10:256

    PubMed Central  PubMed  Google Scholar 

  • Popper AN (1970) Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim Behav 18:552–562

    Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290

    Google Scholar 

  • Poulson TL (1992) The mammoth cave ecosystem. In: Camacho A (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, Madrid, pp 569–611

    Google Scholar 

  • Poulson TL (2001) Morphological and physiological correlates of evolutionary reduction of metabolic rate among amblyopsid cave fishes. Environ Biol Fishes 62:239–249

    Google Scholar 

  • Poulson TL, Jegla TC (1969) Circadian rhythms in cave animals. Actes of the 4th international congress of speleology, Ljubljana, Yugoslavia, 4–5:193–195

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 165:971–981

    CAS  PubMed  Google Scholar 

  • Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, Zon LI, Borowsky R, Tabin CJ (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111

    CAS  PubMed  Google Scholar 

  • Protas M, Conrad M, Gross JB, Tabin C, Borowsky R (2007) Regressive evolution in the Mexican tetra, Astyanax mexicanus. Curr Biol 17:452–454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Protas M, Tabansky I, Conrad M, Gross JB, Vidal O, Tabin CJ, Borowsky R (2008) Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev 10:196–209

    PubMed  Google Scholar 

  • Protas M, Jeffery WR (2012) Evolution and development in cave animals: from fish to crustaceans. WIREs Dev Biol 1:823–845.

    Google Scholar 

  • Proudlove GS (2006) Subterranean fishes of the world: an account of the subterranean (hypogean) fishes described to 2003 with a bibliography 1541–2004. International Society for Subterranean Biology, Moulis, France, p 300

    Google Scholar 

  • Proudlove GS (2010) Biodiversity and distribution of the subterranean fishes of the world. In: Trajano E, Bichuette ME, Kapoor BG (eds) The biology of subterranean fishes. Science Publishers, Enfield, NH, pp 41–63

    Google Scholar 

  • Riesch R, Plath M, Schlupp I (2010) Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology 91:1494–1505

    PubMed  Google Scholar 

  • Riesch R, Plath M, Schlupp I (2011) Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation. Biol Lett 7:909–912

    PubMed Central  PubMed  Google Scholar 

  • Rohner R, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RB, Lindquist S, Tabin CJ (2013) Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342:1372–1375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober-and unter-irdisch lebender Astyanax-Foramen. Zeitschrift für Morphologie der Tiere 61:255–316

    Google Scholar 

  • Schemmel C (1980) Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. anoptichthys: an example of apparent monfactorial inheritance by polygenes. Zeitschrift für Tierpsycholologie 53:9–22

    CAS  Google Scholar 

  • Schlegel PA, Steinfartz S, Bulog B (2009) Non-visual sensory physiology and magnetic orientation in the blind cave salamander, Proteus anguinus (and some other cave-dwelling urodele species): review and new results on light-sensitivity and non-visual orientation in subterranean urodeles (Amphibia). Anim Biol 59:351–384

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schulz-Mirbach T, Stransky C, Schlickeisen J, Reichenbacher B (2008) Differences in otolith morphologies between surface- and cave-dwelling populations of Poecilia mexicana (Teleostei, Poeciliidae) reflect adaptations to life in an extreme habitat. Evol Ecol Res 10:537–558

    Google Scholar 

  • Schulz-Mirbach T, Ladich F, Riesch R, Plath M (2010) Otolith morphology and hearing abilities in cave and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana, (Teleostei: Poeciliidae). Hear Res 267:137–148

    PubMed Central  PubMed  Google Scholar 

  • Schulz-Mirbach T, Heß M, Plath M (2011) Inner ear morphology in the Atlantic Molly Poecilia mexicana—first detailed microanatomical study of the inner ear of a Cyprinodontiform species. PLoS One 6(11):e27734.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wallfollowing behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A 195:225–240

    Google Scholar 

  • Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J N Am Benthol Soc 20:550–563

    Google Scholar 

  • Soares D, Niemiller ML (2013) Sensory adaptations of fishes to subterranean environments. Bioscience 63:274–283

    Google Scholar 

  • Soares D, Yamamoto Y, Strickler AG, Jeffery WR (2004) The lens has a specific influence on optic nerve and tectum development in the blind cavefish Astyanax. Dev Neurosci 26:308–317

    CAS  PubMed  Google Scholar 

  • Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in Astyanax cave fish (Teleostei) in northern Mexico. Mol Phylogenet Evol 62:62–70

    PubMed  Google Scholar 

  • Strickler AG, Yamamoto Y, Jeffery WR (2007) The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev Biol 311:512–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swofford DL (1982) Genetic variability, population differentiation, and biochemical relationships in the family Amblyopsidae. Master’s Thesis, Eastern Kentucky University, Richmond, KY

    Google Scholar 

  • Tobler M (2008) Divergence in trophic ecology characterizes colonization of extreme habitats. Biol J Linn Soc 95:517–528

    Google Scholar 

  • Tobler M (2009) Does a predatory insect contribute to the divergence between cave- and surface-adapted fish populations? Biol Lett 5:506–509

    PubMed Central  PubMed  Google Scholar 

  • Tobler M, Riesch R, Tobler CM, Schulz-Mirbach T, Plath M (2009) Natural and sexual selection against immigrants maintains differentiation among micro-allopatric populations. J Evol Biol 22:2298–2304

    CAS  PubMed  Google Scholar 

  • Trajano E (1991) Population ecology of Pimelodella kronei, troglobitic catfish from Southeastern Brazil (Siluriformes, Pimelodiae). Environ Biol Fishes 30:407–421

    Google Scholar 

  • Trajano E (1997) Population ecology of Trichomycterus itacarambiensis, a cave catfish from eastern Brazil (Siluriformes, Trichomycteridae). Environ Biol Fishes 50:357–369

    Google Scholar 

  • Trajano E (2001) Ecology of subterranean fishes: an overview. Environ Biol Fishes 62:133–160

    Google Scholar 

  • Trajano E, Bockmann FA (2000) Ecology and behavior of a new cave catfish of the genus Taunayia from northeastern Brazil (Siluriformes, Heptapterinae). Ichthyol Expl Freshw 11:207–216

    Google Scholar 

  • Triques ML (1996) Eigenmannia vicentespelaea, a new species of cave dwelling electrogenic Neotropical fish (Ostariophysi: Gymnotiformes: Sternopygidae). Revue Française de Aquariologie 23:1–4

    Google Scholar 

  • Vandel A (1964) Biospeologie: la biologie des animaux cavernicoles. Gauthier-Villars, Paris

    Google Scholar 

  • Varatharasan N, Crol RP, Franz-Odenall T (2009) Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus. Dev Dyn 238:3056–3064

    PubMed  Google Scholar 

  • Weber A (1995) The lateral line system of epigean and cave dwelling catfishes of the genus Rhamdia (Pimelodidae, Teleostei) in Mexico. Memoires de Biospeologie 22:215–225

    Google Scholar 

  • Weber A (1996) Cave dwelling catfish populations of the genus Rhamdia (Pimelodidae, Siluroidei, Teleostei) in Mexico. Memoires de Biospeologie 23:73–85

    Google Scholar 

  • Weber A, Wilkens H (1998) Rhamdia macuspanensis: a new species of troglobitic pimelodid catfish (Siluriformes: Pimelodidae) from a cave in Tabasco, Mexico. Copeia 1998:998–1004

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol Biol 23:271–367

    Google Scholar 

  • Wilkens H (2007) Regressive evolution: ontogeny and genetics of cavefish eye rudimentation. Biol J Linn Soc 92:287–296

    Google Scholar 

  • Wilkens H, Strecker U (2003) Convergent evolution of the cavefish Astyanax (Charcidae, Teleostei): genetic evidence from reduced eye-size and pigmentation. Biol J Linn Soc 80:545–554

    Google Scholar 

  • Wilkens H, Langecker TG, Olcese J (1993) Circadian rhythms of melatonin synthesis in the pineal organ of cave-dwelling Astyanax fasciatus (Teleostei: Characiformes). Memoires de Biospeleologie 20:279–282

    Google Scholar 

  • Williams PW, Ford DC (2006) Global distribution of carbonate rocks. Zeitschrift fur Geomorphologie 147(Suppl):1–2

    Google Scholar 

  • Willis LD, Brown AV (1985) Distribution and habitat requirements of the Ozark cavefish, Amblyopsis rosae. Am Midl Nat 114:311–317

    Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693

    Google Scholar 

  • Windsor SP, Tan D, Montgomery JC (2008) Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). J Exp Biol 211:2950–2959

    PubMed  Google Scholar 

  • Woods LP, Inger RF (1957) The cave, spring, and swamp fishes of the family Amblyopsidae of central and eastern United States. Am Midl Nat 58:232–256

    Google Scholar 

  • Yamamoto Y, Jeffery WR (2000) Central role for the lens in cave fish eye degeneration. Science 289:631–633

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Stock DW, Jeffery WR (2004) Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–847

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Byerly MS, Jackson WR, Jeffery WR (2009) Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol 330:200–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshizawa M, Goricki S, Soares D, Jeffery WR (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshizawa M, Yamamoto Y, O-Quin KE, Jeffery WR (2012) Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol 10:108

    PubMed Central  PubMed  Google Scholar 

  • Zafar NP, Morgan E (1992) Feeding entrains an endogenous rhythm of swimming activity in the blind Mexican cave fish. J Interdiscipl Cycle Res 23:165–166

    Google Scholar 

  • Zhao YH, Gozlan RE, Zhang CG (2011) Out of sight out of mind: current knowledge of Chinese cave fishes. J Fish Biol 79:1545–1562

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Niemiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niemiller, M.L., Soares, D. (2015). Cave Environments. In: Riesch, R., Tobler, M., Plath, M. (eds) Extremophile Fishes. Springer, Cham. https://doi.org/10.1007/978-3-319-13362-1_8

Download citation

Publish with us

Policies and ethics