Skip to main content

A Uniform Evolutionary Algorithm Based on Decomposition and Contraction for Many-Objective Optimization Problems

  • Conference paper
  • 1698 Accesses

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 2))

Abstract

For many-objective optimization problems, how to get a set of solutions with good convergence and diversity is a difficult and challenging task. To achieve this goal, a new evolutionary algorithm based on decomposition and contraction is proposed. Moreover, a sub-population strategy is used to enhance the local search ability and improve the convergence. The proposed algorithm adopts a contraction scheme of the non-dominance area to determine the best solution of each sub-population. The comparison with the several existing well-known algorithms: NSGAII, MOEA/D and HypE, on two kinds of benchmark functions with 5 to 25 objectives is made, and the results indicate that the proposed algorithm is able to obtain more accurate Pareto front with better diversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag, New York, Inc., Secaucus (2006)

    Google Scholar 

  2. Kokshenev, I., Braga, A.P.: An efficient multi-objective learning algorithm for RBF neural network. Neurocomputing 73(16-18), 2799–2808 (2010)

    Article  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Nebro, A., Durillo, J., et al.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, MCDM 2009, 66–73 (2009)

    Google Scholar 

  5. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal of Operational Research 180(3), 1653–1669 (2007)

    Article  Google Scholar 

  6. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. on Volutionary Computation 11(6), 770–784 (2007)

    Article  Google Scholar 

  7. Friedrich, T., Horoba, C., Neumann, F.: Multiplicative approximations and the hypervolume indicator. In: Proc. of 2009 Genetic and Evolutionary Computation Conference, pp. 571–578 (2009)

    Google Scholar 

  8. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point. In: Proc. of Foundations of Genetic Algorithm X, pp. 87–102 (2009)

    Google Scholar 

  9. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume- based many-objective optimization. Evolution Computation 19, 45–76 (2011)

    Article  Google Scholar 

  12. Hughes, E.J.: Evolutionary many-objective optimization: Many once or one many? In: Proc. of 2005 IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)

    Google Scholar 

  13. Hughes, E.J.: MSOPS-II: A general-purpose many-objective optimizer. In: Proc. of 2007 IEEE Congress on Evolutionary Computation, pp. 3944–3951 (2007)

    Google Scholar 

  14. Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 51–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation 11(6), 712–731 (2007)

    Article  Google Scholar 

  16. Tan, Y., Jiao, C., Li, H., Wang, X.: MOEA/D +uniform design: A new version of MOEA/D for optimization problems with many objectives. Computers & Operations Research 40(6), 1648–1660 (2013)

    Article  MathSciNet  Google Scholar 

  17. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. on Evolutionary Computation. 13(2), 284–302 (2009)

    Article  Google Scholar 

  18. Bentley, P.J., Wakefield, J.P.: Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms. In: World Conference on Soft Computing in Design and Manufacturing, pp. 231–240 (1997)

    Google Scholar 

  19. Kokolo, I., Hajime, K., Shigenobu, K.: Failure of Pareto-based MOEAs: Does Nondominated Really Mean Near to Optimal? In: Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 957–962 (2001)

    Google Scholar 

  20. Farina, M., Amato, P.: A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics Part A—Systems and Humans 34(3), 315–326 (2004)

    Article  Google Scholar 

  21. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Dai, C., Wang, Y.: A New Evolutionary Algorithm Based on Contraction Method for Many-objective Optimization Problems. Applied Mathematics and Computation, 192–205 (2014)

    Google Scholar 

  23. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations. Ph.D. dissertation, Dept. Electr. Comput. Eng. Graduate School Eng., Air Force Instit. Technol., Wright- Patterson AFB, OH (May 1999)

    Google Scholar 

  24. Zitzler, E., Deb, K., Thie, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  25. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation (CEC 2002), pp. 825–830 (2002)

    Google Scholar 

  26. Coello Coello, C.A., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)

    Article  Google Scholar 

  27. Robert, S., Torrie, J., Dickey, D.: Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New York (1997)

    Google Scholar 

  28. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    Google Scholar 

  29. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing. Springer, Secaucus (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dai, C., Wang, Y., Hu, L. (2015). A Uniform Evolutionary Algorithm Based on Decomposition and Contraction for Many-Objective Optimization Problems. In: Handa, H., Ishibuchi, H., Ong, YS., Tan, KC. (eds) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. Proceedings in Adaptation, Learning and Optimization, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-13356-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13356-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13355-3

  • Online ISBN: 978-3-319-13356-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics