Skip to main content

Symmetries and Dualities in Name-Passing Process Calculi

  • 763 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8808)

Abstract

We study symmetries and duality between input and output in the \(\pi \)-calculus. We show that in dualisable versions of \(\pi \), including \(\pi \) and fusions, duality breaks with the addition of ordinary input/output types. We illustrate two proposals of calculi that overcome these problems. One approach is based on a modification of fusion calculi in which the name equivalences produced by fusions are replaced by name preorders, and with a distinction between positive and negative occurrences of names. The resulting calculus allows us to import subtype systems, and related results, from the pi-calculus. The second approach consists in taking the minimal symmetrical conservative extension of \(\pi \) with input/output types.

Keywords

  • Type System
  • Operational Semantic
  • Parallel Composition
  • Typing Rule
  • Mobile Process

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13350-8_23
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13350-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boreale, M., Buscemi, M.G., Montanari, U.: A General Name Binding Mechanism. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 61–74. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  2. Fu, Y.: The \(\chi \)-calculus. In: Proc. APDC, pp. 74–81. IEEE Computer Society Press (1997)

    Google Scholar 

  3. Gardner, P., Wischik, L.: Explicit fusions. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 373. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  4. Hirschkoff, D., Madiot, J.-M., Sangiorgi, D.: Duality and i/o-types in the \(\pi \)-calculus. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 302–316. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  5. Hirschkoff, D., Madiot, J.M., Sangiorgi, D.: Name-Passing Calculi: From Fusions to Preorders and Types. long version of the paper presented at LICS’13, in preparation (2014)

    Google Scholar 

  6. Hirschkoff, D., Madiot, J.M., Xu, X.: A behavioural theory for a \(\pi \)-calculus with preorders. submitted (2014)

    Google Scholar 

  7. Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comp. Sci. 152(2), 437–486 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Laneve, C., Victor, B.: Solos in Concert. Mathematical Structures in Computer Science 13(5), 657–683 (2003)

    MathSciNet  CrossRef  Google Scholar 

  9. Milner, R.: Functions as processes. Mathematical Structures in Computer Science 2(2), 119–141 (1992)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Parrow, J., Victor, B.: The fusion calculus: expressiveness and symmetry in mobile processes. In: Proc. of LICS, pp. 176–185. IEEE (1998)

    Google Scholar 

  11. Parrow, J., Victor, B.: The update calculus (extended abstract). In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 409–423. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  12. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathematical Structures in Computer Science 6(5), 409–453 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Sangiorgi, D.: \(\pi \)-calculus, internal mobility, and agent-passing calculi. In: Selected papers from TAPSOFT ’95, pp. 235–274. Elsevier (1996)

    Google Scholar 

  14. Sangiorgi, D.: Lazy functions and mobile processes. In: Proof, Language, and Interaction, pp. 691–720. The MIT Press (2000)

    Google Scholar 

  15. Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes. Cambridge University Press (2001)

    Google Scholar 

  16. van Bakel, S., Vigliotti, M.G.: An Implicative Logic based encoding of the \(\lambda \)-calculus into the \(\pi \)-calculus (2014). http://www.doc.ic.ac.uk/~svb/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hirschkoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hirschkoff, D., Madiot, JM., Sangiorgi, D. (2014). Symmetries and Dualities in Name-Passing Process Calculi. In: Calude, C., Freivalds, R., Kazuo, I. (eds) Computing with New Resources. Lecture Notes in Computer Science(), vol 8808. Springer, Cham. https://doi.org/10.1007/978-3-319-13350-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13350-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13349-2

  • Online ISBN: 978-3-319-13350-8

  • eBook Packages: Computer ScienceComputer Science (R0)