Advertisement

Small Universal Devices

  • Artiom Alhazov
  • Yurii Rogozhin
  • Sergey Verlan
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

In this paper we overview several universal universality constructions for different type of devices based on (circular) string rewriting, multiset rewriting and splicing operations. We consider systems that have relatively small description and that are or can be effectively used for subsequent constructions of (small) universal devices.

Keywords

Turing Machine State Symbol Register Machine Universal Turing Machine Splice System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alford, G.: An explicit construction of a universal extended H system. Technical Report CDMTCS-043, University of Auckland (August 1997)Google Scholar
  2. 2.
    Alhazov, A., Freund, R.: On universal P systems with catalysts with/without states. Fundamenta Informaticae (to appear, 2014)Google Scholar
  3. 3.
    Alhazov, A., Kogler, M., Margenstern, M., Rogozhin, Y., Verlan, S.: Small universal TVDH and test tube systems. International Journal of Foundations of Computer Science 22(1), 143–154 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alhazov, A., Kudlek, M., Rogozhin, Y.: Nine universal circular post machines. Computer Science Journal of Moldova 10(3(30)) (2002)Google Scholar
  5. 5.
    Alhazov, A., Rogozhin, Y., Verlan, S.: On small universal splicing systems. International Journal of Foundations of Computer Science 23(07), 1423–1438 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset rewriting systems. Theoretical Computer Science 412(17), 1581–1591 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barzdin, I.M.: Ob odnom klasse machin Turinga (machiny Minskogo), russian. Algebra i Logika 1, 42–51 (1963)MathSciNetGoogle Scholar
  8. 8.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Solving np-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Cocke, J., Minsky, M.: Universality of tag systems with P=2. Journal of the ACM 11(1), 15–20 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dassow, J., Truthe, B.: On the power of networks of evolutionary processors. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 158–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Ferretti, C., Mauri, G., Kobayashi, S., Yokomori, T.: On the universality of post and splicing systems. Theoretical Computer Science 231(2), 157–170 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Freund, R., Oswald, M.: A small universal antiport P system with forbidden context. In: Leung, H., Pighizzini, G. (eds.) Proceedingsof the 8th International Workshop on Descriptional Complexity of Formal Systems, DCFS 2006, pp. 259–266. New Mexico State University, Las Cruces (2006)Google Scholar
  13. 13.
    Frisco, P.: Direct constructions of universal extended H systems. Theoretical Computer Science 296(2), 269–293 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Frisco, P., Hoogeboom, H.J., Sant, P.: A direct construction of a universal P system. Fundamenta Informaticae 49(1–3), 103–122 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gruska, J.: Descriptional complexity (of languages) - a short survey. In: Mazurkiewicz, A. (ed.) Mathematical Foundations of Computer Science 1976. LNCS, vol. 45, pp. 65–80. Springer, Heidelberg (1976)CrossRefGoogle Scholar
  16. 16.
    Gruska, J: Foundations of computing. Thomson Learning (1997)Google Scholar
  17. 17.
    Gruska, J.: Quantum challenges. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 1–28. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Gruska, J.: Quantum Computing. Osborne/McGraw-Hill (1999)Google Scholar
  19. 19.
    Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Mathematical Biology 49(6), 737–759 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Head, T.: Splicing languages generated with one sided context. In: Computing with Bio-Molecules. Theory and Experiments, pp. 158–181 (1998)Google Scholar
  21. 21.
    Ivanov, S., Pelz, E., Verlan, S.: Small universal Petri nets with inhibitor arcs. arXiv, CoRR, abs/1312.4414 (2013)Google Scholar
  22. 22.
    Ivanov, S., Pelz, E., Verlan, S.: Small universal non-deterministic petri nets with inhibitor arcs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 186–197. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Ivanov, S., Rogozhin, Y., Verlan, S.: Small universal networks of evolutionary processors. Fundamenta Informaticae (to appear, 2014)Google Scholar
  24. 24.
    Kari, L.: DNA computing: Arrival of biological mathematics. The Mathematical Intelligencer 19(2), 9–22 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Korec, I.: Small universal register machines. Theoretical Computer Science 168(2), 267–301 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Malcev, A.I.: Algorithms and Recursive Functions. Wolters-Noordhoff Pub. Co., Groningen (1970)Google Scholar
  27. 27.
    Margenstern, M.: Frontier between decidability and undecidability: a survey. Theoretical Computer Science 231(2), 217–251 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 1 generate all recursively enumerable languages. In: Ito, M., Păun, G., Yu, S., (eds.) Words, Semigroups, and Transductions, pp. 329–339. World Scientific (2001)Google Scholar
  29. 29.
    Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems with parallel computations: the problem is solved. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, Provelence, vol. 5, pp. 229–238 (1962)Google Scholar
  31. 31.
    Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood Cliffts (1967)zbMATHGoogle Scholar
  32. 32.
    Neary, T., Woods, D.: Four small universal turing machines. Fundam. Inform. 91(1), 123–144 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Neary, T., Woods, D.: The Complexity of Small Universal Turing Machines: A Survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Ollinger, N.: The Quest for Small Universal Cellular Automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 318–329. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  35. 35.
    Post, E.: Formal reductions of the general combinatorial decision problem. American Journal of Mathematics 65(2), 197–215 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000) (Also TUCS. Report No. 208, 1998)Google Scholar
  37. 37.
    Păun, G.: Membrane Computing, An Introduction. Springer-Verlag (2002)Google Scholar
  38. 38.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer (1998)Google Scholar
  39. 39.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook Of Membrane Computing. Oxford University Press (2009)Google Scholar
  40. 40.
    Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168(2), 215–240 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Rogozhin, Y., Verlan, S.: On the rule complexity of universal tissue p systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 356–362. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Rogozhin, Y., Verlan, S.: P systems based on tag operations. Computer Science Journal of Moldova 20(3), 366–373 (2012)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Schroeppel, R.: A two counter machine cannot calculate 2N. In: AI Memos. MIT AI Lab (1972)Google Scholar
  44. 44.
    Shannon, C.E.: A universal Turing machine with two internal states. Automata Studies, Annals of Mathematics Studies 34, 157–165 (1956)MathSciNetGoogle Scholar
  45. 45.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. of the London Mathematical Society 42(2), 230–265 (1936)MathSciNetzbMATHGoogle Scholar
  46. 46.
    von Neumann, J.: Theory of Self-Reproducing Automata. Univ. Illinois Press (1966)Google Scholar
  47. 47.
    Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines. Journal of the ACM 8(4), 476–483 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc., (2002)Google Scholar
  49. 49.
    Zizza, R.: Splicing systems. Scholarpedia 5(7), 9397 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Artiom Alhazov
    • 1
  • Yurii Rogozhin
    • 1
  • Sergey Verlan
    • 1
    • 2
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of Moldova Academiei 5ChişinăuMoldova
  2. 2.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations