Skip to main content
  • 672 Accesses

Abstract

In this chapter we study the shock wave structure in a rarefied polyatomic gas by using the ET14 theory. We show how the ET14 theory can overcome the difficulties encountered in the previous approaches: Bethe-Teller approach and Gilbarg-Paolucci approach. Firstly, the predictions derived from the ET14 theory are shown and compared with the results from the NSF theory. Secondly, the Bethe-Teller theory is reexamined in the light of the ET14 theory. Lastly, comparison between the theoretical predictions derived from the ET14 theory and the experimental data is made, where we show a very good agreement. We are able to explain in a unified manner the three different shock wave profiles Types A, B and C for increasing Mach number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. Bethe, E. Teller, Deviations from thermal equilibrium in shock waves, Reprinted by Engineering Research Institute, University of Michigan, Ann Arbor

    Google ScholarĀ 

  2. D. Gilbarg, D. Paolucci, The structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2, 617 (1953)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1991)

    MATHĀ  Google ScholarĀ 

  4. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331 (1949)

    Google ScholarĀ 

  5. I. MĆ¼ller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    BookĀ  MATHĀ  Google ScholarĀ 

  6. I. MĆ¼ller, T. Ruggeri, Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37, I edn. (Springer, New York, 1993)

    Google ScholarĀ 

  7. W. Dreyer, Maximization of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20, 6505 (1987)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flow, Approximation Methods in Kinetic Theory (Springer, Berlin/Heidelberg, 2005)

    Google ScholarĀ 

  9. G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)

    Google ScholarĀ 

  10. V.M. Zhdanov, The kinetic theory of a polyatomic gas. Soviet Phys. JETP 26, 1187 (1968)

    Google ScholarĀ 

  11. F.J. MacCormack, Kinetic equations for polyatomic gases: the 17-moment approximation. Phys. Fluids 11, 2533 (1968)

    ArticleĀ  Google ScholarĀ 

  12. F.J. MacCormack, Kinetic moment equations for a gas of polyatomic molecules with many internal degrees of freedom. Phys. Fluids 13, 1446 (1970)

    ArticleĀ  Google ScholarĀ 

  13. F. Mallinger, Generalization of the Grad theory to polyatomic gases. INRIA Research Report (1998), p. 3581

    Google ScholarĀ 

  14. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E 89, 013025 (2014)

    ArticleĀ  Google ScholarĀ 

  15. N.H. Johannesen, H.K. Zienkiewicz, P.A. Blythe, J.H. Gerrard, Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide. J. Fluid Mech. 13, 213 (1962)

    ArticleĀ  Google ScholarĀ 

  16. Japan Society of Mechanical Engineers, JSME Data Book, Thermophysical Properties of Fluids (Japan Society of Mechanical Engineers, Tokyo, 1983)

    Google ScholarĀ 

  17. W.M. Haynes, D.R. Lide (eds.), CRC Handbook of Chemistry and Physics, 91st edn. (CRC Press, Boca Raton, 2010)

    Google ScholarĀ 

  18. W. Weiss, Continuous shock structure in extended thermodynamics. Phys. Rev. E 52, R5760 (1995)

    ArticleĀ  Google ScholarĀ 

  19. W.C. Griffith, A. Kenny, On fully-dispersed shock waves in carbon dioxide. J. Fluid Mech. 3, 286 (1957)

    ArticleĀ  Google ScholarĀ 

  20. W.C. Griffith, W. Bleakney, Shock waves in gases. Am. J. Phys. 22, 597 (1954)

    ArticleĀ  Google ScholarĀ 

  21. W. Griffith, D. Brickl, V. Blackman, Structure of shock waves in polyatomic gases. Phys. Rev. 102, 1209 (1956)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, T., Sugiyama, M. (2015). Shock Wave in a Polyatomic Gas. In: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham. https://doi.org/10.1007/978-3-319-13341-6_8

Download citation

Publish with us

Policies and ethics