Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

  • Sergiy Bogomolov
  • Goran Frehse
  • Marius Greitschus
  • Radu Grosu
  • Corina Pasareanu
  • Andreas Podelski
  • Thomas Strump
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8855)

Abstract

Compositional verification techniques in the assume-guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicolin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 35–48. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Donzé, A., Frehse, G.: Modular, hierarchical models of control systems in SpaceEx. In: European Control Conference (ECC) (2013)Google Scholar
  8. 8.
    Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Frehse, G., Maler, O.: Reachability analysis of a switched buffer network. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 698–701. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)Google Scholar
  12. 12.
    Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning. Formal Methods in System Design (FMSD) 32(3), 175–205 (2008)CrossRefMATHGoogle Scholar
  14. 14.
    Pnueli, A.: In transition from global to modular temporal reasoning about programs. In: Logics and Models of Concurrent Systems. NATO ASI Series (1985)Google Scholar
  15. 15.
    Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design (FMSD) 32(1), 57–83 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Zutshi, A., Sankaranarayanan, S., Deshmukh, J., Kapinski, J.: A trajectory splicing approach to concretizing counterexamples for hybrid systems. In: Conference on Decision and Control (CDC), pp. 3918–3925 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sergiy Bogomolov
    • 1
  • Goran Frehse
    • 2
  • Marius Greitschus
    • 1
  • Radu Grosu
    • 3
  • Corina Pasareanu
    • 4
  • Andreas Podelski
    • 1
  • Thomas Strump
    • 1
  1. 1.University of FreiburgGermany
  2. 2.Université Joseph Fourier Grenoble 1 – VerimagFrance
  3. 3.Vienna University of TechnologyAustria
  4. 4.NASA Ames Research CenterUSA

Personalised recommendations