Skip to main content

A Semantic Reasoner Using Attributed Graphs Based on Intelligent Fusion of Security Multi-sources Information

  • 474 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8703)

Abstract

Recently, the need of monitoring both real and virtual environments is growing up, especially in security contexts. Virtual environments are rich of data produced by human interactions that can not be extracted using classical physical sensors. Thus, new kind of sensors allow to obtain and collect a huge quantity of data from these virtual environment. In order to monitor complex environments, in which the human factor is essential, arises the need of combining both data derived from objective measurements (hard data) and data derived from human interaction (soft data). In this paper we present a method and a software architecture for the fusion of heterogeneous data. The novelty of this method is the joint use of a rule-based inference engine, of a graph matcher and of semantic ontology reasoning to combine and process structured data coming for hard and soft sources. An application of the proposed system is presented within the framework of a Security Intelligence project.

Keywords

  • Rule-based Inference Engine
  • Soft Data
  • Fusion Center
  • Fusion Engine
  • Parsing Events

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13323-2_7
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13323-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion, 14(1), 28–44 (2013). http://www.sciencedirect.com/science/article/pii/S1566253511000558

  2. Pravia, M., Babko-Malaya, O., Schneider, M., White, J., Chong, C.-Y., Willsky, A.: Lessons learned in the creation of a data set for hard/soft information fusion. In: 12th International Conference on Information Fusion, FUSION ’09, pp. 2114–2121, July 2009

    Google Scholar 

  3. Pravia, M., Prasanth, R.K., Arambel, P., Sidner, C., Chong, C.-Y.: Generation of a fundamental data set for hard/soft information fusion. In: 2008 11th International Conference on Information Fusion, pp. 1–8, June 2008

    Google Scholar 

  4. Hall, D., McNeese, M., Llinas, J., Mullen, T.: A framework for dynamic hard/soft fusion. In: 2008 11th International Conference on Information Fusion, pp. 1–8, June 2008

    Google Scholar 

  5. Gross, G., Nagi, R., Sambhoos, K., Schlegel, D., Shapiro, S., Tauer, G.: Towards hard+soft data fusion: Processing architecture and implementation for the joint fusion and analysis of hard and soft intelligence data. In: 2012 15th International Conference on Information Fusion (FUSION), pp. 955–962, July 2012

    Google Scholar 

  6. Cordella, L.P., Foggia, P., Sansone, C., Tortorella, F., Vento, M.: A cascaded multiple expert system for verification. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 330–339. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. De Santo, M., Percannella, G., Sansone, C., Vento, M.: Unsupervised news video segmentation by combined audio-video analysis. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 273–281. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  8. Digioia, G., Panzieri, S.: Infusion: a system for situation and threat assessment in current and foreseen scenarios. In: 2012 IEEE International Multi-Disciplinary Conference on in Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 316–323, March 2012

    Google Scholar 

  9. Sambhoos, K., Nagi, R., Sudit, M., Stotz, A.: Enhancements to high level data fusion using graph matching and state space search. Information Fusion 11(4), 351–364 (2010). http://www.sciencedirect.com/science/article/pii/S1566253509000955

    CrossRef  Google Scholar 

  10. High-level fusion for intelligence applications using recombinant cognition synthesis. Information Fusion 13(1), 79–98 (2012). http://www.sciencedirect.com/science/article/pii/S1566253510000758

  11. Zhang, T., Du, Y.: An information prediction method integrating soft data with hard data. In: 2010 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), vol. 1, Aug 2010, pp. V1-1–V1-5

    Google Scholar 

  12. Italian ministry of Research and Education. Sintesys project web page (2013). http://sintesys.eng.it/

  13. McMaster, D., Nagi, R., Sambhoos, K.: Temporal alignment in soft information processing. In: 2011 Proceedings of the 14th International Conference on Information Fusion (FUSION), pp. 1–8, July 2011

    Google Scholar 

  14. Premaratne, K., Murthi, M., Zhang, J., Scheutz, M., Bauer, P.: A dempster-shafer theoretic conditional approach to evidence updating for fusion of hard and soft data. In: 12th International Conference on Information Fusion, FUSION ’09, pp. 2122–2129, July 2009

    Google Scholar 

  15. W3C. Rdf standard web page (2013). http://www.w3.org/RDF/

  16. W3C. Owl standard web page (2013). http://www.w3.org/OWL/

  17. W3C. Sparql standard web page (2013). http://www.w3.org/TR/rdf-sparql-query/

  18. The Apache Software Foundation. Apache jena web page (2013). http://jena.apache.org/

  19. W3C. Swrl web page (2013). http://www.w3.org/Submission/SWRL/

  20. Clark and Parsia. Pellet inference engine web page (2013). http://clarkparsia.com/

Download references

Acknowledgments

This project has been partially supported by MIUR (Italian Ministry of Education and Research) with SINTESYS Project (PON01_01687)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Carletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carletti, V., Di Lascio, R., Foggia, P., Vento, M. (2014). A Semantic Reasoner Using Attributed Graphs Based on Intelligent Fusion of Security Multi-sources Information. In: Mazzeo, P., Spagnolo, P., Moeslund, T. (eds) Activity Monitoring by Multiple Distributed Sensing. AMMDS 2014. Lecture Notes in Computer Science(), vol 8703. Springer, Cham. https://doi.org/10.1007/978-3-319-13323-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13323-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13322-5

  • Online ISBN: 978-3-319-13323-2

  • eBook Packages: Computer ScienceComputer Science (R0)