Greaves, B., Collins, J., Parkes, J., Tindal, A.: Temporal forecast uncertainty for ramp events. Wind Eng. 33(4), 309–319 (2009)
CrossRef
Google Scholar
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector. Mach. Learn. 46(1–3), 389–442 (2002)
CrossRef
MATH
Google Scholar
Heinermann, J., Kramer, O.: Precise wind power prediction with SVM ensemble regression. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 797–804. Springer, Heidelberg (2014)
CrossRef
Google Scholar
Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)
CrossRef
Google Scholar
Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). Accessed 15 July 2014
Google Scholar
Kamath, C.: Understanding wind ramp events through analysis of historical data. In: Proceedings of the IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–6 (2010)
Google Scholar
Kramer, O., Gieseke, F., Satzger, B.: Wind energy prediction and monitoring with neural computation. Neurocomputing 109, 84–93 (2013)
CrossRef
Google Scholar
Kramer, O., Treiber, N.A., Sonnenschein, M.: Wind power ramp event prediction with support vector machines. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 37–48. Springer, Heidelberg (2014)
CrossRef
Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
MATH
MathSciNet
Google Scholar
Poloczek, J., Treiber, N.A., Kramer, O.: KNN regression as geo-imputation method for spatio-temporal wind data. In: de la Puerta, J.G., et al. (eds.) International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. AISC, vol. 299, pp. 185–193. Springer, Heidelberg (2014)
CrossRef
Google Scholar
Potter, C.W., Lew, D., McCaa, J., Cheng, S., Eichelberger, S., Grimit, E.: Creating the dataset for the western wind and solar integration study (USA). In: 7th International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms, (2008)
Google Scholar
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
CrossRef
Google Scholar
Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
CrossRef
Google Scholar
Treiber, N.A., Heinermann, J., Kramer, O.: Aggregation of features for wind energy prediction with support vector regression and nearest neighbors. In: European Conference on Machine Learning (ECML), Workshop DARE (2013)
Google Scholar
Treiber, N.A., Kramer, O.: Evolutionary turbine selection for wind power predictions. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS, vol. 8736, pp. 267–272. Springer, Heidelberg (2014)
Google Scholar
Vanderplas, J., Connolly, A., Ivezić, Ž, Gray, A.: Introduction to astroml: machine learning for astrophysics. In: Conference on Intelligent Data Understanding (CIDU), pp. 47–54 (2012)
Google Scholar
van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)
CrossRef
Google Scholar