Skip to main content

Covering Partial Cubes with Zones

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8845))

Abstract

A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An arrangement is called simple if any \(d+1\) hyperplanes have empty intersection.

  2. 2.

    For a very good introduction to terminology related to partial orders and lattices we refer to Chapter 3 of Stanley, Enumerative Combinatorics Vol. I [17].

References

  1. Ackerman, E., Pach, J., Pinchasi, R., Radoičić, R., Tóth, G.: A note on coloring line arrangements (submitted)

    Google Scholar 

  2. Björner, A., Las Vergnas, M., White, N., Sturmfels, B., Ziegler, G.M.: Oriented Matroids. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  3. Bose, P., Cardinal, J., Collette, S., Hurtado, F., Korman, M., Langerman, S., Taslakian, P.: Coloring and guarding arrangements. Discrete Math. Theor. Comput. Sci. 15, 139–154 (2013)

    MATH  MathSciNet  Google Scholar 

  4. Cardinal, J., Joret, G.: Hitting all maximal independent sets of a bipartite graph. Algorithmica (to appear)

    Google Scholar 

  5. Cheng, C.T.: A poset-based approach to embedding median graphs in hypercubes and lattices. Order 29, 147–163 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cordovil, R., Forge, D.: Flipping in acyclic and strongly connected graphs (submitted)

    Google Scholar 

  7. Doignon, J.-P., Falmagne, J.-C.: Learning Spaces - Interdisciplinary Applied Mathematics. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  8. Duffus, D., Kierstead, H.A., Trotter, W.T.: Fibres and ordered set coloring. J. Comb. Theory Ser. A 58, 158–164 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duffus, D., Sands, B., Sauer, N., Woodrow, R.E.: Two-colouring all two-element maximal antichains. J. Comb. Theory Ser. A 57, 109–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eppstein, D., Falmagne, J.-C., Ovchinnikov, S.: Media Theory - Interdisciplinary Applied Mathematics. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Fukuda, K., Prodon, A., Sakuma, T.: Notes on acyclic orientations and the shelling lemma. Theor. Comput. Sci. 263, 9–16 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Füredi, Z.: Maximal independent subsets in Steiner systems and in planar sets. SIAM J. Discrete Math. 4, 196–199 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Furstenberg, H., Katznelson, Y.: A density version of the Hales-Jewett theorem for k = 3. Discrete Math. 75, 227–241 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs, 2nd edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  15. Imrich, W., Klavžar, S., Mulder, H.M.: Median graphs and triangle-free graphs. SIAM J. Discret. Math. 12, 111–118 (1999)

    Article  MATH  Google Scholar 

  16. Ovchinnikov, S.: Graphs and Cubes. Springer, New York (2011)

    Book  MATH  Google Scholar 

  17. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was initiated at the 2nd ComPoSe Workshop held at the TU Graz, Austria, in April 2012. We thank the organizers and the participants for the great working atmosphere. We also acknowledge insightful discussions on related problems with several colleagues, in particular Michael Hoffmann (ETH Zürich) and Ferran Hurtado (UPC Barcelona).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean Cardinal or Stefan Felsner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardinal, J., Felsner, S. (2014). Covering Partial Cubes with Zones. In: Akiyama, J., Ito, H., Sakai, T. (eds) Discrete and Computational Geometry and Graphs. JCDCGG 2013. Lecture Notes in Computer Science(), vol 8845. Springer, Cham. https://doi.org/10.1007/978-3-319-13287-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13287-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13286-0

  • Online ISBN: 978-3-319-13287-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics