Advertisement

An Algorithm for Guideline Transformation: From BPMN to PROforma

  • Begoña Martínez-SalvadorEmail author
  • Mar Marcos
  • Anderson Sánchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8903)

Abstract

In healthcare domain, business process modelling technologies are able to support clinical processes recommended in guidelines. It has been shown that BPMN is intuitively understood by all stakeholders, including domain experts. However, if we want to develop any computer system using clinical guidelines, we need them in an executable format. Thus, we need computer-interpretable guidelines. Although there are several formalisms tailored to capture medical processes, encoding a guideline in any of them is not as intuitive. We propose an automatic transformation from a guideline represented in BPMN to a computer-interpretable formalism, in this case, PROforma. To tackle this problem, we have studied the approaches that transform graph-oriented languages into block-oriented languages. We have adapted the solution to our specific-domain problem and to our target language, PROforma, which has features of both, graph and block-oriented paradigms.

Keywords

Guideline representation Guideline transformation Clinical processes BPMN PROforma 

References

  1. 1.
    Bae, J., Bae, H., Kang, S.H., Kim, Y.: Automatic control of workflow processes using ECA rules. IEEE Trans. Knowl. Data Eng. 16(8), 1010–1023 (2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1318584 CrossRefGoogle Scholar
  2. 2.
    Domínguez, E., Pérez, B., Zapata, M.: Towards a traceable clinical guidelines application. A model-driven approach. Methods Inf. Med. 49(6), 571–580 (2010)CrossRefGoogle Scholar
  3. 3.
    Dugan, L., Palmer, N.: BPMN 2.0 Handbook, chap. Making a BPMN 2.0 Model Executable, p. 71:92. Future Strategies Inc. in association with the Workflow Management Coalition (2012)Google Scholar
  4. 4.
    González-Ferrer, A., Fdez-Olivares, J., Castillo, L.: From business process models to hierarchical task network planning domains. Knowl. Eng. Rev. 28(2), 175–193 (2013)CrossRefGoogle Scholar
  5. 5.
    Götz, M., Roser, S., Lautenbacher, F., Bauer, B.: Token analysis of graph-oriented process models. In: Enterprise Distributed Object Computing Conference Workshops, 2009. EDOCW 2009. 13th. pp. 15–24. IEEE, IE (2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5332020
  6. 6.
    Hashemian, N., Abidi, S.S.R.: Modeling clinical workflows using business process modeling notation. In: 25th International Symposium on Computer-Based Medical Systems (CBMS), 2012, pp. 1–4. IEEE (2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6266322
  7. 7.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Marcos, M., Torres-Sospedra, J., Martínez-Salvador, B.: Assessment of clinical guideline model based on metrics for business process models. In: Workshop on Knowledge Representation for Health Care (KR4HC) (2014)Google Scholar
  9. 9.
    Mendling, J., Lassen, K.B., Zdun, U.: On the transformation of control flow between block-oriented and graph-oriented process modelling languages. Int. J. Bus. Process Integr. Manage. 3(2), 96–108 (2008). http://inderscience.metapress.com/index/8644JG867545H066.pdf CrossRefGoogle Scholar
  10. 10.
    Mohler, J., Amstrong, A., Bahnson, R., Boston, B., Busby, J., D’Amico, A., Eastham, J., Enke, C., Farrington, T., Higano, C., Horwitz, E., Kantoff, P., Kawachi, M., Kuette, l.M., Lee, R., MacVicar, G., Malcolm, A., Miller, D., Plimack, E., Pow-Sang, J., Roach, M.r., Rohren, E., Rosenfeld, S., Srinivas, S., Strope, S., Tward, J., Twardowski, P., Walsh, P., Ho, M., Sheadm, D.: Prostate cancer, Version 3.2012: featured updates to the NCCN guidelines. J. Natl Compr. Cancer. Netw. 10(9), 1081–1087 (2012)Google Scholar
  11. 11.
    OMG: Busines Process Model and Notation (BPMN) Version 2.0. OMG Specification, Object Management Group (2011). http://www.omg.org/spec/BPMN/2.0
  12. 12.
    Ouyang, C., Dumas, M., Aalst, W.M., Hofstede, A.H.T., Mendling, J.: From business process models to process-oriented software systems. ACM Trans. Softw. Eng. Methodol. (TOSEM) 19(1), 2 (2009). http://dl.acm.org/citation.cfm?id=1555395 CrossRefGoogle Scholar
  13. 13.
    Reichert, M.: What BPM technology can do for healthcare process support. In: Peleg, M., Lavrač, N., Combi, C. (eds.) AIME 2011. LNCS, vol. 6747, pp. 2–13. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Rojo, M.G., Rolón, E., Calahorra, L., García, F., Sánchez, R.P., Ruiz, F., Ballester, N., Armenteros, M., Rodríguez, T., Espartero, R.M., et al.: Implementation of the business process modelling notation (BPMN) in the modelling of anatomic pathology processes. Diag. Pathol. 3(Suppl 1), S22 (2008)CrossRefGoogle Scholar
  15. 15.
    Svagård, Ingrid, Farshchian, Babak A.: Using business process modelling to model integrated care processes: experiences from a european project. In: Omatu, Sigeru, Rocha, Miguel P., Bravo, José, Fernández, Florentino, Corchado, Emilio, Bustillo, Andrés, Corchado, Juan M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 922–925. Springer, Heidelberg (2009). http://link.springer.com/chapter/10.1007/978-3-642-02481-8_140 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Begoña Martínez-Salvador
    • 1
    Email author
  • Mar Marcos
    • 1
  • Anderson Sánchez
    • 1
  1. 1.Department of Computer Engineering and ScienceUniversitat Jaume ICastellónSpain

Personalised recommendations