Advertisement

Biomimetic Scaffolds for Craniofacial Bone Tissue Engineering: Understanding the Role of the Periosteum in Regeneration

  • Michael E. Frohbergh
  • Peter I. LelkesEmail author
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

The role of the periosteum in bone tissue engineering is a new and exciting development. Although its regenerative capacity is known and its role in initiating wound healing is well-documented, a complete understanding of the underlying mechanisms and specific cues that cause healing induction is still unknown. Recently, a number of different studies have begun to explore how stimulating periosteal recruitment is involved in regeneration. In this chapter we review the importance of the periosteum as well as a number of different materials used to activate and initiate the healing process indicative of the periosteum. Our own work has focused on using electrospun chitosan/hydroxyapatite composite scaffolds in order to integrate the native periosteal tissue with our material and instigate the healing process in critical size calvarial bone defects. Critical size defects remain elusive and problematic in the clinic to date and tissue engineering is a promising candidate to alleviate such problems. In this chapter we will briefly review our material and its ability to induce osseointegration, osteoinduction and support the formation of new, mineralized tissue in a murine model. This material, along with others, reflect promising and auspicious developments in musculoskeletal tissue engineering and are helping to pave the way in understanding how the periosteum is involved in wound healing.

Keywords

Osteogenic Differentiation Ultrahigh Molecular Weight Polyethylene Bone Tissue Engineering Composite Scaffold Osteoprogenitor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by a grant from the National Science Foundation [grant # 0434108]. We are grateful to Dr. Gözde Senel for her help with the SEM, and Dr. Darwin Prokop from the Institute of Regenerative Medicine at Texas A&M University for his generous gift of the mMSCs used in our work. PIL is the Laura H. Carnell Professor of Bioegineering, College of Engineering, Temple University.

References

  1. Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35 (5):1003-1012. doi: 10.1016/j.bone.2004.07.014, pii:S8756-3282(04)00296-0
  2. Almeida M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E, Onal M, Xiong J, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2013) Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 123(1):394–404. doi: 10.1172/JCI65910 CrossRefGoogle Scholar
  3. Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles ME, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, Vila TV, Rodrigues JS, Lear PV, Bravo SB (2012) Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol endocrinol 49(2):R89–R111. doi: 10.1530/JME-12-0072 CrossRefGoogle Scholar
  4. Aspenberg P (2013) Special review: accelerating fracture repair in humans: a reading of old experiments and recent clinical trials. BoneKEy Rep 2:244. doi: 10.1038/bonekey.2012.244 CrossRefGoogle Scholar
  5. Austero MS, Donius AE, Wegst UG, Schauer CL (2012) New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis. J Roy Soc, Interface/Roy Soc. doi: 10.1098/rsif.2012.0241
  6. Ba Linh NT, Min YK, Lee BT (2013) Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. J Biomater Sci Polym Ed 24(5):520–538. doi: 10.1080/09205063.2012.697696 CrossRefGoogle Scholar
  7. Bavariya AJ, Andrew Norowski P Jr, Mark Anderson K, Adatrow PC, Garcia-Godoy F, Stein SH, Bumgardner JD (2013) Evaluation of biocompatibility and degradation of chitosan nanofiber membrane crosslinked with genipin. J Biomed Mater Res B Appl Biomater. doi: 10.1002/jbm.b.33090 Google Scholar
  8. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. doi: 10.1016/j.biotechadv.2010.01.004, pii S0734-9750(10)00006-6CrossRefGoogle Scholar
  9. Bispo VM, Mansur AA, Barbosa-Stancioli EF, Mansur HS (2010) Biocompatibility of nanostructured chitosan/ poly(vinyl alcohol) blends chemically crosslinked with genipin for biomedical applications. J Biomed Nanotechnol 6(2):166–175CrossRefGoogle Scholar
  10. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13(3):357–367. doi: 10.1002/jor.1100130309 CrossRefGoogle Scholar
  11. Cakmak S, Cakmak AS, Gumusderelioglu M (2013) RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Biomed Mater 8(4):045014. doi: 10.1088/1748-6041/8/4/045014 CrossRefGoogle Scholar
  12. Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12(36):4751–4770CrossRefGoogle Scholar
  13. Clark RK (2005) Anatomy and physiology: understanding the human body. Jones and Bartlett Publishers, SudburyGoogle Scholar
  14. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephro 3:S131–S139. doi: 10.2215/Cjn.04151206 CrossRefGoogle Scholar
  15. Cuppone M, Seedhom BB, Berry E, Ostell AE (2004) The longitudinal Young’s modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data. Calcified Tissue Int 74(3):302–309. doi: 10.1007/s00223-002-2123-1 CrossRefGoogle Scholar
  16. Datta P, Ghosh P, Ghosh K, Maity P, Samanta SK, Ghosh SK, Mohapatra PK, Chatterjee J, Dhara S (2013) In vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N-methylene phosphonic chitosan nanofibers for bone regeneration. J Biomed Nanotechnol 9(5):870–879CrossRefGoogle Scholar
  17. Delorme B, Charbord P (2007) Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol Med 140:67–81CrossRefGoogle Scholar
  18. Dong S, Sun J, Li Y, Li J, Cui W, Li B (2014) Electrospun nanofibrous scaffolds of poly(l-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Mat Sci Eng C Mat Biol Appl 35:426–433. doi: 10.1016/j.msec.2013.11.027 CrossRefGoogle Scholar
  19. Eyckmans J, Roberts SJ, Schrooten J, Luyten FP (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling. J Cell Mol Med 14(6B):1845–1856. doi: 10.1111/j.1582-4934.2009.00807.x CrossRefGoogle Scholar
  20. Ferretti C, Borsari V, Falconi M, Gigante A, Lazzarini R, Fini M, Di Primio R, Mattioli-Belmonte M (2012) Human periosteum-derived stem cells for tissue engineering applications: the role of VEGF. Stem Cell Rev 8(3):882–890. doi: 10.1007/s12015-012-9374-7 CrossRefGoogle Scholar
  21. Frohbergh ME (2013) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering applications. Doctoral dissertation, Drexel University, PhiadelphiaGoogle Scholar
  22. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33(36):9167–9178. doi: 10.1016/j.biomaterials.2012.09.009 CrossRefGoogle Scholar
  23. Frohbergh ME, Katsmann A, Mondrinos MJ, Stabler CT, Hankenson KD, Oristaglio JT, Lelkes PI (2014) Osseointegrative properties of electrospun hydroxyapatite-containing nanofibrous chitosan scaffolds  tissue engineering Part A (in press). doi: 10.1089/ten.tea.2013.0789
  24. Frohlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3(4):254–264CrossRefGoogle Scholar
  25. Gentili C, Cancedda R (2009) Cartilage and bone extracellular matrix. Curr Pharm Des 15(12):1334–1348CrossRefGoogle Scholar
  26. Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, SunderlandGoogle Scholar
  27. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211(1):27–35. doi: 10.1002/jcp.20959 CrossRefGoogle Scholar
  28. Guda T, Oh S, Appleford MR, Ong JL (2012) Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering. Int J Oral Maxillofac Implants 27(2):288–294Google Scholar
  29. Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M (2011) The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials 32(30):7363–7374. doi: 10.1016/j.biomaterials.2011.06.048 CrossRefGoogle Scholar
  30. Hsu SH, Huang S, Wang YC, Kuo YC (2013) Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration. Acta Biomater 9(6):6915–6927. doi: 10.1016/j.actbio.2013.02.012 CrossRefGoogle Scholar
  31. Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B Biointerfaces 82 (2):307-315. doi: 10.1016/j.colsurfb.2010.09.002.[pii]  S0927-7765(10)00509-6
  32. Huang C, Tang M, Yehling E, Zhang X (2014) Overexpressing sonic hedgehog Peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther 22(2):430–439. doi: 10.1038/mt.2013.222 CrossRefGoogle Scholar
  33. Hutmacher DW, Sittinger M (2003) Periosteal cells in bone tissue engineering. Tissue Eng 9(Suppl 1):S45–S64. doi: 10.1089/10763270360696978 CrossRefGoogle Scholar
  34. Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang IK, Kwon OH (2005) A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng 100 (1):43-49. doi: [pii] 10.1263/jbb.100.43  S1389-1723(05)70426-6
  35. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64 (2):295–312. doi: 10.1002/(SICI)1097-4644(199702)64:2<295:AID-JCB12>3.0.CO;2-I [pii]
  36. Jin JY, Jeong SI, Shin YM, Lim KS, Shin HS, Lee YM, Koh HC, Kim KS (2009) Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail 11(2):147–153. doi: 10.1093/eurjhf/hfn017 CrossRefGoogle Scholar
  37. Kocabey S, Ceylan H, Tekinay AB, Guler MO (2013) Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells. Acta Biomater 9(11):9075–9085. doi: 10.1016/j.actbio.2013.07.007 CrossRefGoogle Scholar
  38. Leong PL, Morgan EF (2008) Measurement of fracture callus material properties via nanoindentation. Acta Biomater 4(5):1569–1575. doi: 10.1016/j.actbio.2008.02.030 CrossRefGoogle Scholar
  39. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26(30):5999–6008. doi: 10.1016/j.biomaterials.2005.03.030, pii:S0142-9612(05)00255-3CrossRefGoogle Scholar
  40. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621. doi: 10.1002/jbm.10167 [pii]CrossRefGoogle Scholar
  41. Li Y, Shi Y, Duan S, Shan D, Wu Z, Cai Q, Yang X (2013) Electrospun biodegradable polyorganophosphazene fibrous matrix with poly(dopamine) coating for bone regeneration. J Biomed Mater Res A. doi: 10.1002/jbm.a.35065 Google Scholar
  42. Lin Z, Fateh A, Salem DM, Intini G (2014) Periosteum: biology and applications in craniofacial bone regeneration. J dent Res 93(2):109–116. doi: 10.1177/0022034513506445 CrossRefGoogle Scholar
  43. Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34(18):4404–4417. doi: 10.1016/j.biomaterials.2013.02.048 CrossRefGoogle Scholar
  44. Liu W, Lipner J, Xie J, Manning CN, Thomopoulos S, Xia Y (2014) Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces.doi:  10.1021/am405418g
  45. Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y (2014) The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials. doi: 10.1016/j.biomaterials.2013.12.039
  46. Lynnerup N, Astrup JG, Sejrsen B (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med 1:13. doi: 10.1186/1746-160X-1-13 CrossRefGoogle Scholar
  47. Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regenerative Med 5(3):451–462. doi: 10.2217/rme.10.27 CrossRefMathSciNetGoogle Scholar
  48. Mestak O, Matouskova E, Spurkova Z, Benkova K, Vesely P, Mestak J, Molitor M, Pombinho A, Sukop A (2013) Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model. Artif Organs. doi:  10.1111/aor.12224
  49. Minear S, Leucht P, Miller S, Helms JA (2010) rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair. J Bone Miner Res 25(6):1196–1207. doi: 10.1002/jbmr.29 CrossRefGoogle Scholar
  50. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885. doi: 10.1126/science.1110542 CrossRefGoogle Scholar
  51. Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD (2009) The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J Biomech 42(13):2129–2135. doi: 10.1016/j.jbiomech.2009.05.030 CrossRefGoogle Scholar
  52. Ngiam M, Nguyen LT, Liao S, Chan CK, Ramakrishna S (2011) Biomimetic nanostructured materials—potential regulators for osteogenesis? Ann Acad Med Singap 40(5):210–213Google Scholar
  53. Nishimura R, Hata K, Harris SE, Ikeda F, Yoneda T (2002) Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone 31(2):303–312CrossRefGoogle Scholar
  54. Norowski PA, Mishra S, Adatrow PC, Haggard WO, Bumgardner JD (2012) Suture pullout strength and in vitro fibroblast and RAW 264.7 monocyte biocompatibility of genipin crosslinked nanofibrous chitosan mats for guided tissue regeneration. J Biomed Mater Res A. doi:  10.1002/jbm.a.34224
  55. Novotna K, Zajdlova M, Suchy T, Hadraba D, Lopot F, Zaloudkova M, Douglas TE, Munzarova M, Juklickova M, Stranska D, Kubies D, Schaubroeck D, Wille S, Balcaen L, Jarosova M, Kozak H, Kromka A, Svindrych Z, Lisa V, Balik K, Bacakova L (2013) Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J Biomed Mater Res A. doi:  10.1002/jbm.a.35061
  56. Patlolla A, Arinzeh TL (2013) Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotech Bioeng. doi: 10.1002/bit.25146 Google Scholar
  57. Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med. doi:  10.1007/s10856-014-5149-9
  58. Rios CN, Skoracki RJ, Miller MJ, Satterfield WC, Mathur AB (2009) In vivo bone formation in silk fibroin and chitosan blend scaffolds via ectopically grafted periosteum as a cell source: a pilot study. Tissue Eng Part A 15(9):2717–2725. doi: 10.1089/ten.TEA.2008.0360 CrossRefGoogle Scholar
  59. Ruiz-Heiland G, Horn A, Zerr P, Hofstetter W, Baum W, Stock M, Distler JH, Nimmerjahn F, Schett G, Zwerina J (2012) Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis. Ann Rheum Dis 71(3):400–407. doi: 10.1136/ard.2010.148262 CrossRefGoogle Scholar
  60. Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP (2010) Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med 4(7):514–523. doi: 10.1002/term.267 CrossRefGoogle Scholar
  61. Son SR, Linh NTB, Yang HM, Lee BT (2013) In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. Sci Technol Adv Mat 14 (1) doi: 10.1088/1468-6996/14/1/015009, (doi:Artn 015009)
  62. Sun M, Tan W, Wang K, Dong Z, Peng H, Wei F (2013) Effects of allogenous periosteal-derived cells transfected with adenovirus-mediated BMP-2 on repairing defects of the mandible in rabbits. J Oral Maxillofac Surg 71(10):1789–1799. doi: 10.1016/j.joms.2013.03.007 CrossRefGoogle Scholar
  63. Tasso R, Augello A, Boccardo S, Salvi S, Carida M, Postiglione F, Fais F, Truini M, Cancedda R, Pennesi G (2009) Recruitment of a host’s osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Eng Part A 15(8):2203–2212. doi: 10.1089/ten.tea.2008.0269 CrossRefGoogle Scholar
  64. Tiyapatanaputi P, Rubery PT, Carmouche J, Schwarz EM, O’Keefe RJ, Zhang X (2004) A novel murine segmental femoral graft model. J Orthop Res 22(6):1254–1260. doi: 10.1016/j.orthres.2004.03.017, pil S0736026604000713CrossRefGoogle Scholar
  65. Torricelli P, Gioffre M, Fiorani A, Panzavolta S, Gualandi C, Fini M, Focarete ML, Bigi A (2014) Co-electrospun gelatin-poly(l-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Mat Sci Eng C Mat Biol Appl 36:130–138. doi: 10.1016/j.msec.2013.11.050 CrossRefGoogle Scholar
  66. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429. doi: 10.1038/ng1916 CrossRefGoogle Scholar
  67. van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G (2012) Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 30(11):2460–2471. doi: 10.1002/stem.1210 CrossRefGoogle Scholar
  68. Venugopal JR, Giri Dev VR, Senthilram T, Sathiskumar D, Gupta D, Ramakrishna S (2011) Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Cell biol Int 35(1):73–80. doi: 10.1042/CBI20090066 Google Scholar
  69. Wang Q, Huang C, Zeng F, Xue M, Zhang X (2010) Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J pathol 177(6):3100–3111. doi: 10.2353/ajpath.2010.100060 CrossRefGoogle Scholar
  70. Yang W, Guo D, Harris MA, Cui Y, Gluhak-Heinrich J, Wu J, Chen XD, Skinner C, Nyman JS, Edwards JR, Mundy GR, Lichtler A, Kream BE, Rowe DW, Kalajzic I, David V, Quarles DL, Villareal D, Scott G, Ray M, Liu S, Martin JF, Mishina Y, Harris SE (2013) Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells. J Cell Sci 126(Pt 18):4085–4098. doi: 10.1242/jcs.118596 CrossRefGoogle Scholar
  71. Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X (2010) Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J Biomed Mater Res A 95(3):870–881. doi: 10.1002/jbm.a.32895 CrossRefGoogle Scholar
  72. Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM (2008a) A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 466(8):1777–1787. doi: 10.1007/s11999-008-0312-6 CrossRefGoogle Scholar
  73. Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20(12):2124–2137. doi: 10.1359/JBMR.050806 CrossRefGoogle Scholar
  74. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008b) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32):4314–4322. doi: 10.1016/j.biomaterials.2008.07.038, pilS0142-9612(08)00532-2CrossRefGoogle Scholar
  75. Zhao J, Han W, Tu M, Huan S, Zeng R, Wu H, Cha Z, Zhou C (2012) Preparation and properties of biomimetic porous nanofibrous poly(L-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Mat Sci Eng C Mat Biol Appl 32(6):1496–1502. doi: 10.1016/j.msec.2012.04.031 CrossRefGoogle Scholar
  76. Zigdon-Giladi H, Bick T, Lewinson D, Machtei EE (2013) Co-Transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration. Clin Implant Dent Related Res. doi: 10.1111/cid.12104 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Icahn School of Medicine at Mt. SinaiNew YorkUSA
  2. 2.Department of Bioengineering, College of EngineeringTemple UniversityPhiladelphiaUSA

Personalised recommendations