Advertisement

Cartilage Regeneration Using Induced Pluripotent Stem Cell Technologies

  • Noriyuki Tsumaki
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

The loss of articular cartilage due to trauma or the degeneration caused by aging can result in debilitating conditions and osteoarthritis, because hyaline cartilage has a poor intrinsic capacity for healing. Articular cartilage defects are currently treated by several procedures, including microfracture and autologous chondrocyte transplantation, although fibrocartilaginous tissue is frequently formed instead of true hyaline cartilage. The development of induced pluripotent stem cells (iPSCs) offers a new cell source that is free of the ethical issues associated with the use of embryonic stem cells. In addition, the methods used to generate iPSCs and their differentiation into chondrocytes have been improved. As another cell source, a method for the direct conversion of fibroblasts to chondrocytes, which can generate hyaline cartilage, is also being developed.

Keywords

Articular Cartilage Dermal Fibroblast Hyaline Cartilage Good Manufacturing Practice Articular Cartilage Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bai HY, Chen GA, Mao GH, Song TR, Wang YX (2010) Three step derivation of cartilage like tissue from human embryonic stem cells by 2D-3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds. J Biomed Mater Res, Part A 94(2):539–546. doi: 10.1002/jbm.a.32732 Google Scholar
  2. Barberi T, Willis LM, Socci ND, Studer L (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS medicine 2(6):e161. doi: 10.1371/journal.pmed.0020161 CrossRefGoogle Scholar
  3. Benya PD, Padilla SR, Nimni ME (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15:1313–1321CrossRefGoogle Scholar
  4. Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A (2009) Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27(8):1812–1821. doi: 10.1002/stem.114 CrossRefGoogle Scholar
  5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895. doi: 10.1056/NEJM199410063311401 CrossRefGoogle Scholar
  6. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504Google Scholar
  7. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51(6):987–1000CrossRefGoogle Scholar
  8. Fortier LA, Cole BJ, McIlwraith CW (2012) Science and animal models of marrow stimulation for cartilage repair. The journal of knee surgery 25(1):3–8CrossRefGoogle Scholar
  9. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy Series B, Physical and biological sciences 85(8):348–362CrossRefGoogle Scholar
  10. Gourraud P-A, Gilson L, Girard M, Peschanski M (2012) The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic “Haplobank” of Induced Pluripotent Stem Cell Lines. Stem Cells 30(2):180–186. doi: 10.1002/stem.772 CrossRefGoogle Scholar
  11. Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N (2011) Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 121(2):640–657. doi: 10.1172/JCI44605 CrossRefGoogle Scholar
  12. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460(7259):1132–1135. doi: 10.1038/nature08235 CrossRefGoogle Scholar
  13. Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science (New York, NY) 338:917–921. doi: 10.1126/science.1222454 CrossRefGoogle Scholar
  14. Hwang NS, Varghese S, Elisseeff J (2008a) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE 3(6):e2498. doi: 10.1371/journal.pone.0002498 CrossRefGoogle Scholar
  15. Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J, Cheng L, Elisseeff J (2008b) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U S A 105(52):20641–20646. doi: 10.1073/pnas.0809680106 CrossRefGoogle Scholar
  16. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386. doi: 10.1016/j.cell.2010.07.002 CrossRefGoogle Scholar
  17. Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI (2004) The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum 50(11):3561–3573CrossRefGoogle Scholar
  18. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199. doi: 10.1038/nmeth.1426 CrossRefGoogle Scholar
  19. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisua Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144. doi: 10.1038/nature08311 CrossRefGoogle Scholar
  20. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476. doi: 10.1016/j.stem.2009.05.005 CrossRefGoogle Scholar
  21. Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25(9):2183–2190. doi: 10.1634/stemcells.2007-0105 CrossRefGoogle Scholar
  22. Koyama N, Miura M, Nakao K, Kondo E, Fujii T, Taura D, Kanamoto N, Sone M, Yasoda A, Arai H, Bessho K, Nakao K (2013) Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem cells and development 22(1):102–113. doi: 10.1089/scd.2012.0127 CrossRefGoogle Scholar
  23. Layman DL, Sokoloff L, Miller EJ (1972) Collagen synthesis by articular in monolayer culture. Exp Cell Res 73(1):107–112CrossRefGoogle Scholar
  24. Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460(7259):1136–1139. doi: 10.1038/nature08290 CrossRefGoogle Scholar
  25. Luyten FP, Vanlauwe J (2012) Tissue engineering approaches for osteoarthritis. Bone 51:289–296. doi: 10.1016/j.bone.2011.10.007 CrossRefGoogle Scholar
  26. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474(7350):225–229. doi: 10.1038/nature10106 CrossRefGoogle Scholar
  27. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153. doi: 10.1038/nature08287 CrossRefGoogle Scholar
  28. Marlovits S, Hombauer M, Truppe M, Vècsei V, Schlegel W (2004) Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg 86:286–295. doi: 10.1302/0301-620X.86B2.14918 CrossRefGoogle Scholar
  29. Medvedev SP, Grigor’eva EV, Shevchenko AI, Malakhova AA, Dementyeva EV, Shilov AA, Pokushalov EA, Zaidman AM, Aleksandrova MA, Plotnikov EY, Sukhikh GT, Zakian SM (2011) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem cells and development 20(6):1099–1112. doi: 10.1089/scd.2010.0249 CrossRefGoogle Scholar
  30. Minegishi Y, Hosokawa K, Tsumaki N (2013) Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters. Osteoarthritis Cartilage 21(12):1968–1975. doi: 10.1016/j.joca.2013.09.004 CrossRefGoogle Scholar
  31. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063. doi: 10.1177/0363546508328414 CrossRefGoogle Scholar
  32. Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60(12):3686–3692. doi: 10.1002/art.27229 CrossRefGoogle Scholar
  33. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317CrossRefGoogle Scholar
  34. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K-i, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Meth 8 (5):409–412. doi:http://www.nature.com/nmeth/journal/v8/n5/abs/nmeth.1591.html#supplementary-information
  35. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3):458–466. doi: 10.1002/stem.1293 CrossRefGoogle Scholar
  36. Ra Oldershaw (2012) Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol 93:389–400. doi: 10.1111/j.1365-2613.2012.00837.x Google Scholar
  37. Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194. doi: 10.1038/nbt.1683 nbt.1683[pii]CrossRefGoogle Scholar
  38. Outani H, Okada M, Hiramatsu K, Yoshikawa H, Tsumaki N (2011) Induction of chondrogenic cells from dermal fibroblast culture by defined factors does not involve a pluripotent state. Biochem Biophys Res Commun 411(3):607–612. doi: 10.1016/j.bbrc.2011.06.194 CrossRefGoogle Scholar
  39. Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, Tsumaki N (2013) Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS ONE 8(10):e77365. doi: 10.1371/journal.pone.0077365 CrossRefGoogle Scholar
  40. Park S, Im GI (2013) Embryonic Stem Cells and Induced Pluripotent Stem Cells for Skeletal Regeneration. Tissue engineering Part B, Reviews. doi: 10.1089/ten.TEB.2013.0530 Google Scholar
  41. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54(10):3254–3266. doi: 10.1002/art.22136 CrossRefGoogle Scholar
  42. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, Mansour AA, Caspi I, Krupalnik V, Zerbib M, Maza I, Mor N, Baran D, Weinberger L, Jaitin DA, Lara-Astiaso D, Blecher-Gonen R, Shipony Z, Mukamel Z, Hagai T, Gilad S, Amann-Zalcenstein D, Tanay A, Amit I, Novershtern N, Hanna JH (2013) Deterministic direct reprogramming of somatic cells to pluripotency. Nature. doi: 10.1038/nature12587 Google Scholar
  43. Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB (2009) Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16(5):398–404. doi: 10.1016/j.knee.2009.02.004 CrossRefGoogle Scholar
  44. Steck E, Fischer J, Lorenz H, Gotterbarm T, Jung M, Richter W (2009) Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage. Stem cells and development 18(7):969–978. doi: 10.1089/scd.2008.0213 CrossRefGoogle Scholar
  45. Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K, Nakamura Y (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25(7):1610–1617. doi: 10.1634/stemcells.2006-0504 2006-0504 [pii]CrossRefGoogle Scholar
  46. Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE, Meyers KA, Aaronson SA, Miki T (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 14(1):50–54. doi: 10.1038/ng0996-50 CrossRefGoogle Scholar
  47. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefGoogle Scholar
  48. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  49. Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31(27):6968–6980. doi: 10.1016/j.biomaterials.2010.05.064 CrossRefGoogle Scholar
  50. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, Trounson A, Turner D, Yamanaka S, Wilmut I (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384. doi: 10.1016/j.stem.2013.08.003 CrossRefGoogle Scholar
  51. Umeda K, Zhao J, Simmons P, Stanley E, Elefanty A, Nakayama N (2012) Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2:455. doi: 10.1038/srep00455 CrossRefGoogle Scholar
  52. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148. doi: 10.1038/nature08285 CrossRefGoogle Scholar
  53. Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP, Bishop AE, Polak JM (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12(6):1687–1697. doi: 10.1089/ten.2006.12.1687 CrossRefGoogle Scholar
  54. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi: 10.1038/nature08797 CrossRefGoogle Scholar
  55. von der Mark K, Gauss V, von der Mark H, Müller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532CrossRefGoogle Scholar
  56. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630. doi: 10.1016/j.stem.2010.08.012 CrossRefGoogle Scholar
  57. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770. doi: 10.1038/nature07863 CrossRefGoogle Scholar
  58. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801. doi: 10.1126/science.1172482 CrossRefGoogle Scholar
  59. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefGoogle Scholar
  60. Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27(11):2667–2674. doi: 10.1002/stem.201 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dept. of Cell Growth and Differentiation, Center for IPS Cell Research and ApplicationKyoto UniversitySakyo-KuJapan

Personalised recommendations