Manipulation of Macrophages to Enhance Bone Repair and Regeneration

Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

Bone is a unique tissue in that it has the ability to heal itself perfectly, without scarring, under certain conditions. Therapeutic strategies that harness its powerful repair processes have the potential to successfully regenerate bone tissue in large defects, which remain a significant clinical challenge. However, despite the demonstrated importance of the inflammatory response in dictating the success or failure of implanted biomaterials, it is not often considered as an important criterion in the design of tissue engineering scaffolds. This chapter first highlights the role of macrophages in orchestrating the delicate balance between bone formation and resorption. Then, the main strategies that have been explored to actively control the inflammatory response are discussed, including delivery of mesenchymal stem cells, controlled release of immunomodulatory cytokines, and topographical modification of biomaterial scaffolds. Increased understanding of macrophage phenotypes (M1, various M2’s, osteoclasts, etc.) will allow us to design therapeutic strategies that tip the balance toward healthy bone regeneration and away from pathologic bone loss.

References

  1. Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532Google Scholar
  2. Alfarsi MA, Hamlet SM, Ivanovski S (2013) Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J Biomed Mater Res A 102:60–67Google Scholar
  3. Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA et al (2012) Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 375(1–2):196–206Google Scholar
  4. Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes-Hansen F, Plesner TL, Hauge EM et al (2009) A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol 174(1):239–247Google Scholar
  5. Antonios JK, Yao Z, Li C, Rao AJ, Goodman SB (2013) Macrophage polarization in response to wear particles in vitro. Cell Mol Immunol 10(6):471–482Google Scholar
  6. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069Google Scholar
  7. Awojoodu AO, Ogle ME, Sefcik LS, Bowers DT, Martin K, Brayman KL et al (2013) Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc Natl Acad Sci USA 110(34):13785–13790Google Scholar
  8. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842Google Scholar
  9. Barth KA, Waterfield JD, Brunette DM (2013) The effect of surface roughness on RAW 264.7 macrophage phenotype. J Biomed Mater Res A 101(9):2679–2688Google Scholar
  10. Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M et al (2010) Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4(6):3073–3086Google Scholar
  11. Bartneck M, Heffels KH, Pan Y, Bovi M, Zwadlo-Klarwasser G, Groll J (2012) Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials 33(16):4136–4146Google Scholar
  12. Becker L, Liu NC, Averill MM, Yuan W, Pamir N, Peng Y et al (2012) Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One 7(3):e33297Google Scholar
  13. Betz RR (2002) Limitations of autograft and allograft: new synthetic solutions. Orthopedics 25(5 Suppl):s561–s570Google Scholar
  14. Blakney AK, Swartzlander MD, Bryant SJ (2012) The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 100(6):1375–1386Google Scholar
  15. Bocker W, Docheva D, Prall WC, Egea V, Pappou E, Rossmann O et al (2008) IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med (Berl) 86(10):1183–1192Google Scholar
  16. Bota PC, Collie AM, Puolakkainen P, Vernon RB, Sage EH, Ratner BD et al (2010) Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A 95(2):649–657Google Scholar
  17. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491Google Scholar
  18. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987Google Scholar
  19. Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8(21):980–989Google Scholar
  20. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106(10):1229–1237Google Scholar
  21. Champagne CM, Takebe J, Offenbacher S, Cooper LF (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30(1):26–31Google Scholar
  22. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244Google Scholar
  23. Chehroudi B, Ghrebi S, Murakami H, Waterfield JD, Owen G, Brunette DM (2010) Bone formation on rough, but not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation. J Biomed Mater Res A 93(2):724–737Google Scholar
  24. Chen S, Jones JA, Xu Y, Low HY, Anderson JM, Leong KW (2010) Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31(13):3479–3491Google Scholar
  25. Chen Z, Wu C, Gu W, Klein T, Crawford R, Xiao Y (2014) Osteogenic differentiation of bone marrow MSCs by beta-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials 35(5):1507–1518Google Scholar
  26. Das A, Segar CE, Hughley BB, Bowers DT, Botchwey EA (2013a) The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials 34(38):9853–9862Google Scholar
  27. Das A, Tanner S, Barker DA, Green D, Botchwey EA (2013b) Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect. J Biomed Mater Res A 102:1210–1218Google Scholar
  28. Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE et al (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106(6):1299–1310Google Scholar
  29. Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80(6):1298–1307Google Scholar
  30. Eslami B, Zhou S, Van Eekeren I, LeBoff MS, Glowacki J (2011) Reduced osteoclastogenesis and RANKL expression in marrow from women taking alendronate. Calcif Tissue Int 88(4):272–280Google Scholar
  31. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840Google Scholar
  32. Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M (2013) Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater 9(9):8046–8058Google Scholar
  33. Ghrebi S, Hamilton DW, Douglas Waterfield J, Brunette DM (2013) The effect of surface topography on cell shape and early ERK1/2 signaling in macrophages; linkage with FAK and Src. J Biomed Mater Res A 101(7):2118–2128Google Scholar
  34. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J (2011) TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci USA 108(4):1585–1590Google Scholar
  35. Gleissner CA (2012) Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis. Front Physiol 3:1MathSciNetGoogle Scholar
  36. Green TR, Fisher J, Matthews JB, Stone MH, Ingham E (2000) Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res 53(5):490–497Google Scholar
  37. Grundnes O, Reikeras O (1993) The importance of the hematoma for fracture healing in rats. Acta Orthop Scand 64(3):340–342Google Scholar
  38. Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J et al (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30(4):762–772Google Scholar
  39. Hamlet S, Ivanovski S (2011) Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification. Acta Biomater 7(5):2345–2353Google Scholar
  40. Hamlet S, Alfarsi M, George R, Ivanovski S (2012) The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Implants Res 23(5):584–590Google Scholar
  41. Hatton A, Nevelos JE, Matthews JB, Fisher J, Ingham E (2003) Effects of clinically relevant alumina ceramic wear particles on TNF-alpha production by human peripheral blood mononuclear phagocytes. Biomaterials 24(7):1193–1204Google Scholar
  42. Hausman MR, Rinker BD (2004) Intractable wounds and infections: the role of impaired vascularity and advanced surgical methods for treatment. Am J Surg 187(5A):44S–55SGoogle Scholar
  43. Hirose N, Maeda H, Yamamoto M, Hayashi Y, Lee GH, Chen L et al (2008) The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles. Cell Transplant 17(1–2):211–222Google Scholar
  44. Hisatome T, Yasunaga Y, Yanada S, Tabata Y, Ikada Y, Ochi M (2005) Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26(22):4550–4556Google Scholar
  45. Hofkens W, Schelbergen R, Storm G, van den Berg WB, van Lent PL (2013) Liposomal targeting of prednisolone phosphate to synovial lining macrophages during experimental arthritis inhibits M1 activation but does not favor M2 differentiation. PLoS One 8(2):e54016Google Scholar
  46. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286Google Scholar
  47. Jung M, Sola A, Hughes J, Kluth DC, Vinuesa E, Vinas JL et al (2012) Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int 81(10):969–982Google Scholar
  48. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E et al (2013) Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 22(5):767–777Google Scholar
  49. Kaneko M, Tomita T, Nakase T, Ohsawa Y, Seki H, Takeuchi E et al (2001) Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology (Oxford) 40(3):247–255Google Scholar
  50. Kaplan JM, Youd ME, Lodie TA (2011) Immunomodulatory activity of mesenchymal stem cells. Curr Stem Cell Res Ther 6(4):297–316Google Scholar
  51. Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M et al (2010) Macrophage plasticity in experimental atherosclerosis. PLoS One 5(1):e8852Google Scholar
  52. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444Google Scholar
  53. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453Google Scholar
  54. Kim YH, Furuya H, Tabata Y (2014) Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 35(1):214–224Google Scholar
  55. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275–286Google Scholar
  56. Krishnamoorthy L (2006) The role of macrophages in human wound healing and their response to a tissue engineered dermal replacement in human chronic wounds. MD thesis, University of GlasgowGoogle Scholar
  57. Lamers E, Walboomers XF, Domanski M, Prodanov L, Melis J, Luttge R et al (2012) In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine 8(3):308–317Google Scholar
  58. Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A et al (2009) M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 182(7):4415–4422Google Scholar
  59. Loftus EV Jr, Crowson CS, Sandborn WJ, Tremaine WJ, O’Fallon WM, Melton LJ 3rd (2002) Long-term fracture risk in patients with Crohn’s disease: a population-based study in Olmsted County. Minn Gastroenterol 123(2):468–475Google Scholar
  60. Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E et al (2009) Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 85(5):779–787Google Scholar
  61. Lu Z, Wang G, Dunstan CR, Chen Y, Lu WY, Davies B et al (2013a) Activation and promotion of adipose stem cells by tumour necrosis factor-alpha preconditioning for bone regeneration. J Cell Physiol 228(8):1737–1744Google Scholar
  62. Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X et al (2013b) Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int 84(4):745–755Google Scholar
  63. Lyons FG, Al-Munajjed AA, Kieran SM, Toner ME, Murphy CM, Duffy GP et al (2010) The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 31(35):9232–9243Google Scholar
  64. Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL et al (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci USA 107(34):15211–15216Google Scholar
  65. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11(2):76–81Google Scholar
  66. Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473(2):201–209Google Scholar
  67. Matthews JB, Besong AA, Green TR, Stone MH, Wroblewski BM, Fisher J et al (2000a) Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J Biomed Mater Res 52(2):296–307Google Scholar
  68. Matthews JB, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E (2000b) Comparison of the response of primary human peripheral blood mononuclear phagocytes from different donors to challenge with model polyethylene particles of known size and dose. Biomaterials 21(20):2033–2044Google Scholar
  69. Mayer A, Roch T, Kratz K, Lendlein A, Jung F (2012) Pro-angiogenic CD14(++) CD16(+) CD163(+) monocytes accelerate the in vitro endothelialization of soft hydrophobic poly (n-butyl acrylate) networks. Acta Biomater 8(12):4253–4259Google Scholar
  70. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA 110(43):17253–17258Google Scholar
  71. Medina RJ, O’Neill CL, O’Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA et al (2011) Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol Med 17(9–10):1045–1055Google Scholar
  72. Menzel-Severing J, Kruse FE, Schlotzer-Schrehardt U (2013) Stem cell-based therapy for corneal epithelial reconstruction: present and future. Can J Ophthalmol 48(1):13–21Google Scholar
  73. Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G et al (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17(1):2–15Google Scholar
  74. Mitchell W, Bridget Matthews J, Stone MH, Fisher J, Ingham E (2003) Comparison of the response of human peripheral blood mononuclear cells to challenge with particles of three bone cements in vitro. Biomaterials 24(5):737–748Google Scholar
  75. Mishra PK, Wu W, Rozo C, Hallab NJ, Benevenia J, Gause WC (2011) Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J Immunol 187(12):6491–6498Google Scholar
  76. Mohiuddin M, Pan HA, Hung YC, Huang GS (2012) Control of growth and inflammatory response of macrophages and foam cells with nanotopography. Nanoscale Res Lett 7(1):394Google Scholar
  77. Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV (2012) Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33(34):8793–8801Google Scholar
  78. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969Google Scholar
  79. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737Google Scholar
  80. Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T et al (2013) Macrophages-Key cells in the response to wear debris from joint replacements. J Biomed Mater Res A 101(10):3033–3045Google Scholar
  81. Nicolaidou V, Wong MM, Redpath AN, Ersek A, Baban DF, Williams LM et al (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871Google Scholar
  82. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118(12):3436–3439Google Scholar
  83. Pajarinen J, Kouri VP, Jamsen E, Li TF, Mandelin J, Konttinen YT (2013) The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater 9(11):9229–9240Google Scholar
  84. Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR (2002) Effect of repeated irrigation and debridement on fracture healing in an animal model. J Orthop Res 20(6):1197–1204Google Scholar
  85. Paul NE, Skazik C, Harwardt M, Bartneck M, Denecke B, Klee D et al (2008) Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 29(30):4056–4064Google Scholar
  86. Pazianas M (2011) Osteonecrosis of the jaw and the role of macrophages. J Natl Cancer Inst 103(3):232–240Google Scholar
  87. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105(52):20764–20769Google Scholar
  88. Petrie Aronin CE, Shin SJ, Naden KB, Rios PD Jr, Sefcik LS, Zawodny SR et al (2010) The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 31(25):6417–6424Google Scholar
  89. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489Google Scholar
  90. Rao AJ, Gibon E, Ma T, Yao Z, Smith RL, Goodman SB (2012) Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater 8(7):2815–2823Google Scholar
  91. Reikeras O, Shegarfi H, Wang JE, Utvag SE (2005) Lipopolysaccharide impairs fracture healing: an experimental study in rats. Acta Orthop 76(6):749–753Google Scholar
  92. Rifas L, Arackal S, Weitzmann MN (2003) Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. J Cell Biochem 88(4):650–659Google Scholar
  93. Roelofs AJ, Thompson K, Ebetino FH, Rogers MJ, Coxon FP (2010) Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des 16(27):2950–2960Google Scholar
  94. Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA et al (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 107(10):4669–4674Google Scholar
  95. Sarahrudi K, Mousavi M, Thomas A, Eipeldauer S, Vecsei V, Pietschmann P et al (2010) Elevated levels of macrophage colony-stimulating factor in human fracture healing. J Orthop Res 28(5):671–676Google Scholar
  96. Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19(5):459–466Google Scholar
  97. Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F et al (2012) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347(3):567–573Google Scholar
  98. Sefcik LS, Aronin CE, Awojoodu AO, Shin SJ, Mac Gabhann F, MacDonald TL et al (2011) Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth. Tissue Eng Part A 17(5-6):617–629Google Scholar
  99. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512Google Scholar
  100. Spiller KL and Vunjak-Novakovic G (2013) Clinical translation of controlled protein delivery systems for tissue engineering. Drug Deliv Transl Res 1–15. doi: 10.1007/s13346-013-0135-1
  101. Spiller K, Anfang R, Johnathan Ng, Nakazawa K, Vunjak-Novakovic G (eds) (2013) Vascularization of bone tissue engineering scaffolds via modulation of macrophage behavior. In: Gordon research conference: biomaterials and tissue engineering, Holderness, NHGoogle Scholar
  102. Spiller KL, Anfang RR, Spiller KJ, Johnathan Ng, Nakazawa KR, Daulton JW et al (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488Google Scholar
  103. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292Google Scholar
  104. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349Google Scholar
  105. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197Google Scholar
  106. Taira M, Kagiya T, Harada H, Sasaki M, Kimura S, Narushima T et al (2010) Microscopic observations and inflammatory cytokine productions of human macrophage phagocytising submicron titanium particles. J Mater Sci Mater Med 21(1):267–275Google Scholar
  107. Telukuntla KS, Suncion VY, Schulman IH, Hare JM (2013) The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc 2(5):e000338Google Scholar
  108. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T et al (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87(18):7260–7264Google Scholar
  109. Valles G, Gil-Garay E, Munuera L, Vilaboa N (2008) Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles. Biomaterials 29(15):2326–2335Google Scholar
  110. Vanos R, Lildhar LL, Lehoux EA, Beaule PE, Catelas I (2013) In vitro macrophage response to nanometer-size chromium oxide particles. J Biomed Mater Res B Appl Biomater 102:149–159Google Scholar
  111. Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH et al (2007) Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 72(3):290–299Google Scholar
  112. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y (2010) Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res 20(6):701–712Google Scholar
  113. Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L et al (2002) Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23(2):517–526Google Scholar
  114. Wythe SE, Nicolaidou V, Horwood NJ (2014) Cells of the immune system orchestrate changes in bone cell function. Calcif Tissue Int 94(1):98–111Google Scholar
  115. Yagil-Kelmer E, Kazmier P, Rahaman MN, Bal BS, Tessman RK, Estes DM (2004) Comparison of the response of primary human blood monocytes and the U937 human monocytic cell line to two difference sizes of alumina ceramic particles. J Orthop Res 22(4):832–838Google Scholar
  116. Zaiss MM, Kurowska-Stolarska M, Bohm C, Gary R, Scholtysek C, Stolarski B et al (2011) IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-alpha-mediated bone loss. J Immunol 186(11):6097–6105Google Scholar
  117. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281Google Scholar
  118. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868Google Scholar
  119. Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189(7):3508–3520Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaUSA

Personalised recommendations