Skip to main content

Biomaterials Used for Maxillofacial Regeneration

  • Chapter
  • First Online:
  • 1640 Accesses

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

Critical-sized bone defects in the maxillofacial region attributed to congenital maldevelopment, trauma, periodontal disease, or surgical ablation, as in the case of tumor surgery, and progressive resorption of the alveolar bone after tooth loss can cause damage to their structures, leading to noticeable deformity and dysfunction. Therefore, maxillofacial bone regeneration has been attracting great interest of many surgical specialties, specialties of dentistry, and experts in the region of stem cell and biomaterial. Clinical imperatives for maxillofacial bone regeneration require new therapies or procedures instead of autologous/allogeneic bone grafts. A variety of biomaterials have been developed as alternatives over a short period of time. This chapter reviews current clinical treatments and the biomaterials clinically used for maxillofacial bone regeneration. Moreover, recent advances and future directions in biomaterials used for maxillofacial bone regeneration have been discussed in the present chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B: Rev 14(2):199–215

    Google Scholar 

  • Anderson HC, Garimella R, Tague SE (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10(1):822–837

    Google Scholar 

  • Andersson ÖH, Kangasniemi I (1991) Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mater Res 25(8):1019–1030

    Google Scholar 

  • Arimura H, Ouchi T, Kishida A et al (2005) Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable cross-linking agent. J Biomater Sci Polym Ed 16(11):1347–1358

    Google Scholar 

  • Aryal S, Bahadur KC, Dharmaraj N et al (2006) Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scripta Mater 54(2):131–135

    Google Scholar 

  • Auchincloss H Jr, Sachs DH (1998) Xenogeneic transplantation. Annu Rev Immunol 16(1):433–470

    Google Scholar 

  • Avera SP, Stampley WA, McAllister BS (1997) Histologic and clinical observations of resorbable and nonresorbable barrier membranes used in maxillary sinus graft containment. Int J Oral Maxillofac Implants 12(1):88

    Google Scholar 

  • Babbush CA (1998) The use of a new allograft material for osseous reconstruction associated with dental implants. Implant Dent 7(3):205–212

    Google Scholar 

  • Balani K, Anderson R, Laha T et al (2007) Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28(4):618–624

    Google Scholar 

  • Becker W, Clokie C, Sennerby L et al (1998) Histologic findings after implantation and evaluation of different grafting materials and titanium micro screws into extraction sockets: case reports. J Periodontol 69(4):414–421

    Google Scholar 

  • Blomqvist JE, Alberius P, Isaksson S (1998) Two-stage maxillary sinus reconstruction with endosseous implants: a prospective study. Int J Oral Maxillofac Implants 13(6):758

    Google Scholar 

  • Bons N, Lehmann S, Mestre-Francès N et al (2002) Brain and buffy coat transmission of bovine spongiform encephalopathy to the primate Microcebus murinus. Transfusion 42(5):513–516

    Google Scholar 

  • Bornstein MM, Chappuis V, von Arx T et al (2008) Performance of dental implants after staged sinus floor elevation procedures: 5 year results of a prospective study in partially edentulous patients. Clin Oral Implants Res 19:1034–1043

    Google Scholar 

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Google Scholar 

  • Boyan BD, Ranly DM, Schwartz Z (2006) Use of growth factors to modify osteoinductivity of demineralized bone allografts: lessons for tissue engineering of bone. Dent Clin North Am 50:217–228

    Google Scholar 

  • Boyne PJ, Peetz M (1997) Osseous reconstruction of the maxilla and the mandible: surgical techniques using titanium mesh and bone mineral. Quintessence Publishing Company, New York

    Google Scholar 

  • Boyne PJ, James RA (1980) Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 38:613–616

    Google Scholar 

  • Bramfeld H, Sabra G, Centis V et al (2010) Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem 17(33):3944–3967

    Google Scholar 

  • Brekke J (1995) Architectural principles applied to three-dimensional therapeutic implants composed of bioresorbable polymers. encyclopedic handbook biomaterials and bioengineering part a: materials. Marcel Dekker Inc, Nwe York 689–731

    Google Scholar 

  • Buser D, Brägger U, Lang NP et al (1990) Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implant Res 1(1):22–32

    Google Scholar 

  • Buser D, Hoffmann B, Bernard J et al (1998) Evaluation of filling materials in membrane-protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implant Res 9(3):137–150

    Google Scholar 

  • Cai YZ, Wang LL, Cai HX et al (2010) Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. J Biomed Mater Res Part A 95(1):49–57

    Google Scholar 

  • Campbell LA (1998) Use of bone grafting in the management of a troublesome operative site planned for future implant restoration. J Oral Implantol 24(2):97–100

    Google Scholar 

  • Cano J, Campo J, Moreno LA et al (2006) Osteogenic alveolar distraction: a review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(1):11–28

    Google Scholar 

  • Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22(6):493–507

    Google Scholar 

  • Caplanis N, Sigurdsson TJ, Rohrer MD, et al. (1997) Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Int J Oral Maxillofacial Implants 12(5): 634–642

    Google Scholar 

  • Chandramohan MD, Marimuthu K (2011) Rapid prototyping/rapid tooling–a over view and its applications in orthopaedics. Int J Adv Eng Technol 2(4):435–448

    Google Scholar 

  • Cheung LK, Chua HDP, Hariri F, et al. (2010) Distraction osteogenesis. In: Andersson L, Kahnberg KE, Pogrel MA (eds) Oral and maxillofacial surgery. Wiley-Blackwell, Hoboken, pp 1027–1059

    Google Scholar 

  • Cho EC, Kim JW, Fernández-Nieves A et al (2008) Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett 8(1):168–172

    Google Scholar 

  • Christenson EM, Anseth KS, van den Beucken JJJP et al (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25(1):11–22

    Google Scholar 

  • Christgau M, Bader N, Schmalz G et al (1998) GTR therapy of intrabony defects using 2 different bioresorbable membranes: 12-month results. J Clin Periodontol 25(6):499–509

    Google Scholar 

  • Chu PK, Liu X (2008) Biomaterials fabrication and processing handbook. CRC Press, Boca Raton

    Google Scholar 

  • Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications. World Scientific, Singapore

    Google Scholar 

  • Coulombe J, Faure H, Robin B et al (2004) In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun 323(4):1184–1190

    Google Scholar 

  • Fleming JE Jr, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 31(3):357–374

    Google Scholar 

  • Fowler EB, Breault LG, Rebitski G (2000) Ridge preservation utilizing an acellular dermal allograft and demineralized freeze-dried bone allograft: part I. A report of 2 cases. J Periodontol 71(8):1353–1359

    Google Scholar 

  • Fricain JC, Schlaubitz S, Le Visage C et al (2013) A nano-hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34(12):2947–2959

    Google Scholar 

  • Goldberg DA, Baer PN (1997) Restoration of localized severely atrophic maxillary ridge: case report. Periodontal Clinical Invest Official Publ Northeast Soc Periodontists 20(2):14–16

    Google Scholar 

  • Guillemin G, Patat JL, Fournie J et al (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21(5):557–567

    Google Scholar 

  • Gupta V, Aseh A, Ríos CN et al (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 4:115–122

    Google Scholar 

  • Habraken W, Wolke JGC, Mikos AG et al (2006) Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed 17(9):1057–1074

    Google Scholar 

  • Hammer C, Linke R, Wagner F et al (2009) Organs from animals for man. Int Arch Allergy Immunol 116(1):5–21

    Google Scholar 

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353

    Google Scholar 

  • He Y, Zhang Z, Zhu H et al (2007) Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. J Craniofac Surg 18(4):800–805

    Google Scholar 

  • Helm GA, Sheehan JM, Sheehan JP et al (1997) Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg 86(1):93–100

    Google Scholar 

  • Hench LL (2011) Bioactive materials for gene control. In: Hench LL, Jones JR, FennNew MB (eds) Materials and technologies for healthcare. World Scientific, Singapore, pp 25–48

    Google Scholar 

  • Hollinger JO, Schmitz JP, Mizgala JW et al (1989) An evaluation of two configurations of tricalcium phosphate for treating craniotomies. J Biomed Mater Res 23(1):17–29

    Google Scholar 

  • Hunter N (2002) Laboratory studies of bovine spongiform encephalopathy. Lancet 360(9331):488–489

    Google Scholar 

  • Hunter J (1974) Treatise on the boold, inflammation and gunshot wounds. Thomas, Bradford

    Google Scholar 

  • Ikeuchi M, Ito A, Dohi Y et al (2003) Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res A 67(4):1115–1122

    Google Scholar 

  • Jain RK, Au P, Tam J et al (2005) Engineering vascularized tissue. Nat Biotechnol 23(7):821–823

    Google Scholar 

  • James R, Deng M, Laurencin CT et al (2011) Nanocomposites and bone regeneration. Front Mater Sci 5(4):342–357

    Google Scholar 

  • Jensen SS, Aaboe M, Pinholt EM et al (1996) Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 11(1):55

    Google Scholar 

  • Jiang X (2011) On novel options for oromaxillofacial functional restoration. Int J prosthodont 25(2):132–134

    Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486

    Google Scholar 

  • Juodzbalys G, Wang H-L (2007) Soft and hard tissue assessment of immediate implant placement: a case series. Clin Oral Implant Res 18:237–243

    Google Scholar 

  • Kim CK, Cho KS, Choi SH et al (1998) Periodontal repair in dogs: effect of allogenic freeze-dried demineralized bone matrix implants on alveolar bone and cementum regeneration. J Periodontol 69(1):26–33

    Google Scholar 

  • Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Target 15(4):241–252

    Google Scholar 

  • Kinoshita Y, Maeda H (2013) Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci World J 2013:21

    Google Scholar 

  • Kleinheinz J, Stratmann U, Joos U et al (2005) VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg 63(9):1310–1316

    Google Scholar 

  • Kumta SM, Leung PC, Griffith JF et al (1998) A technique for enhancing union of allograft to host bone. J Bone Joint Surg Br 80(6):994–998

    Google Scholar 

  • Lang NP, Tonetti MS, Suvan JE et al (2007) Immediate implant placement with transmucosal healing in areas of aesthetic priority: a multicentre randomized-controlled clinical trial I. Surgical outcomes. Clin Oral Implant Res 18:188–196

    Google Scholar 

  • Lemperle G, Morhenn VB, Pestonjamasp V et al (2004) Migration studies and histology of injectable microspheres of different sizes in mice. Plast Reconstr Surg 113(5):1380–1390

    Google Scholar 

  • Lin K, Chang J, Liu X et al (2011a) Synthesis of element-substituted hydroxyapatite with controllable morphology and chemical composition using calcium silicate as precursor. CrystEngComm 13(15):4850–4855

    Google Scholar 

  • Lin K, Liu X, Chang J et al (2011b) Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors. Nanoscale 3(8):3052–3055

    Google Scholar 

  • Lin K, Xia L, Gan J et al (2013a) Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl Mater Interfaces 5(16):8008–8017

    Google Scholar 

  • Lin K, Xia L, Li H et al (2013b) Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 34(38):10028–10042

    Google Scholar 

  • Liu X, Lin K, Chang J (2011) Modulation of hydroxyapatite crystals formed from α-tricalcium phosphate by surfactant-free hydrothermal exchange. CrystEngComm 13(6):1959–1965

    Google Scholar 

  • Marx RE (1993) Philosophy and particulars of autogenous bone grafting. Oral Maxillofac Surg Clin North Am 5:599–612

    Google Scholar 

  • Matsuno T, Hashimoto Y, Adachi S et al (2008) Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 27(6):827–834

    Google Scholar 

  • McMahon RE, Wang L, Skoracki R et al (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101(2):387–397

    Google Scholar 

  • Merkx MAW, Maltha JC, Stoelinga PJW (2003) Assessment of the value of an organic bone additives in sinus floor augmentation: a review of clinical reports. Int J Oral Maxillofac Surg 32(1):1–6

    Google Scholar 

  • Mitchell JC, Musanje L, Ferracane JL (2011) Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater 27(4):386–393

    Google Scholar 

  • Moroni L, De Wijn JR, Van Blitterswijk CA (2008) Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed 19(5):543–572

    Google Scholar 

  • Mors WA, Kaminski EJ (1975) Osteogenic replacement of tricalcium phosphate ceramic implants in the dog palate. Arch Oral Biol 20(5):365–367

    Google Scholar 

  • Müller FA, Gbureck U, Kasuga T et al (2007) Whisker-reinforced calcium phosphate cements. J Am Ceram Soc 90(11):3694–3697

    Google Scholar 

  • Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4(5):659–668

    Google Scholar 

  • Ohgushi H, Okumura M, Tamai S et al (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 24(12):1563–1570

    Google Scholar 

  • Parashis A, Andronikaki-Faldami A, Tsiklakis K (1998) Comparison of 2 regenerative procedures—guided tissue regeneration and demineralized freeze-dried bone allograft—in the treatment of intrabony defects: a clinical and radiographic study. J Periodontol 69(7):751–758

    Google Scholar 

  • Peltola SM, Melchels FPW, Grijpma DW et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    Google Scholar 

  • Piattelli A, Podda G, Scarano A (1997) Clinical and histological results in alveolar ridge enlargement using coralline calcium carbonate. Biomaterials 18:623–627

    Google Scholar 

  • Pina S, Sl Vieira, Rego P et al (2010) Biological responses of brushite-forming Zn- and ZnSrsubstituted beta-tricalcium phosphate bone cements. Eur Cell Mater 20:162–177

    Google Scholar 

  • Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S (2011) Electrospun composite nanofibers for tissue regeneration. J Nanosci Nanotechnol 11(4):3039–3057

    Google Scholar 

  • Price RL, Waid MC, Haberstroh KM et al (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24(11):1877–1887

    Google Scholar 

  • Roeder RK, Sproul MM, Turner CH (2003) Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J Biomed Mater Res, Part A 67(3):801–812

    Google Scholar 

  • Rosenberg E, Rose LF (1998) Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 42(3):467–490

    Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Google Scholar 

  • Rude RK, Gruber HE, Norton HJ et al (2005) Dietary magnesium reduction to 25 % of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37(2):211–219

    Google Scholar 

  • Sandor GKB, Kainulainen VT, Queiroz JO et al (2003) Preservation of ridge dimensions following grafting with coral granules of 48 post-traumatic and post-extraction dento-alveolar defects. Dent Traumatol 19(4):221–227

    Google Scholar 

  • Sàndor GKB, Lindholm TC, Clokie CML (2003a) Bone regeneration of the cranio-maxillofacial and dento-alveolar skeletons in the framework of tissue engineering. Topics in tissue engineering

    Google Scholar 

  • Saulacic N, Zix J, Iizuka T (2009) Complication rates and associated factors in alveolar distraction osteogenesis: a comprehensive review. Int J Oral Maxillofac Surg 38(3):210–217

    Google Scholar 

  • Schofer MD, Veltum A, Theisen C et al (2011) Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med 22(7):1753–1762

    Google Scholar 

  • Simion M, Jovanovic SA, Tinti C et al (2001) Long-term evaluation of osseointegrated implants inserted at the time or after vertical ridge augmentation. Clin Oral Implant Res 12(1):35–45

    Google Scholar 

  • Singh M, Haverinen HM, Dhagat P et al (2010) Inkjet printing—process and its applications. Adv Mater 22(6):673–685

    Google Scholar 

  • Sitharaman B, Shi X, Walboomers XF et al (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43(2):362–370

    Google Scholar 

  • Skoglund A, Hising P, Young C (1997) A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants 12(2):194

    Google Scholar 

  • Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B 39(3):125–131

    Google Scholar 

  • Sokolsky-Papkov M, Agashi K, Olaye A et al (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4):187–206

    Google Scholar 

  • Stevenson S (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 355:S239–S246

    Google Scholar 

  • Suhonen JT, Meyer BJA (1996) Polylactic acid (PLA) root replica in ridge maintenance after loss of a vertically fractured incisor. Dent Traumatol 12(3):155–160

    Google Scholar 

  • Sukumar S, Drízhal I (2008) Bone grafts in periodontal therapy. Acta Medica (Hradec Kralove) 51:203–207

    Google Scholar 

  • Sutradhar A, Paulino GH, Miller MJ, et al. (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. In: Proceedings of the National Academy of Sciences. 107(30):13222–13227

    Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899

    Google Scholar 

  • Valentini P, Abensur D, Densari D et al (1998) Histological evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implant Res 9(1):59–64

    Google Scholar 

  • Vargas GE, Durand LAH, Cadena V et al (2013) Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med 24(5):1261–1269

    Google Scholar 

  • Vasiliev AN, Zlotnikov E, Khinast JG et al (2008) Chemisorption of silane compounds on hydroxyapatites of various morphologies. Scripta Mater 58(12):1039–1042

    Google Scholar 

  • von Arx T, Hardt N, Wallkamm B (1996) The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants. Int J Oral Maxillofac Implants 11(3):387

    Google Scholar 

  • Wang H, Leeuwenburgh SCG, Li Y et al (2011a) The use of micro-and nanospheres as functional components for bone tissue regeneration. Tissue Eng Part B: Rev 18(1):24–39

    Google Scholar 

  • Wang S, Zhang Z, Zhao J et al (2009) Vertical alveolar ridge augmentation with β-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30(13):2489–2498

    Google Scholar 

  • Wang S, Zhang Z, Xia L et al (2010) Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone 46(1):91–100

    Google Scholar 

  • Wang S, Zhao J, Zhang W et al (2011b) Maintenance of phenotype and function of cryopreserved bone-derived cells. Biomaterials 32(15):3739–3749

    MathSciNet  Google Scholar 

  • Wang S, Zhang W, Zhao J et al (2011c) Long-term outcome of cryopreserved bone-derived osteoblasts for bone regeneration in vivo. Biomaterials 32(20):4546–4555

    MathSciNet  Google Scholar 

  • Weissman JL, Snyderman CH, Hirsch BE (1996) Hydroxyapatite cement to repair skull base defects: radiologic appearance. Am J Neuroradiol 17(8):1569–1574

    Google Scholar 

  • Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. In: Proceedings of the National Academy of Sciences 99(8):4769–4774

    Google Scholar 

  • Wiesen M, Kitzis R (1997) Preservation of the alveolar ridge at implant sites. Periodontal Clin Inv Official Publ Northeast Soc Periodontists 20(2):17–20

    Google Scholar 

  • Woo KM, Chen VJ, Jung HM et al (2009) Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng Part A 15(8):2155–2162

    Google Scholar 

  • Wu C, Zhou Y, Xu M et al (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433

    Google Scholar 

  • Xia L, Lin K, Jiang X et al (2013) Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J Mater Chem B 1(40):5403–5416

    Google Scholar 

  • Xue W, Dahlquist K, Banerjee A et al (2008) Synthesis and characterization of tricalcium phosphate with Zn and Mg base dopants. J Mater Sci Mater Med 19(7):2669–2677

    Google Scholar 

  • Yang S, Leong KF, Du Z et al (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Google Scholar 

  • Yeong WY, Chua CK, Leong KF et al (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Google Scholar 

  • Yoshinari N, Tohya T, Mori A et al (1998) Inflammatory cell population and bacterial contamination of membranes used for guided tissue regenerative procedures. J Periodontol 69(4):460–469

    Google Scholar 

  • Zamani A, Mmrani GR, Nasab MM (2009) Lithium’s effect on bone mineral density. Bone 44(2):331–334

    Google Scholar 

  • Zeng D, Xia L, Zhang W et al (2012) Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits. Tissue Eng Part A 18(7–8):870–881

    Google Scholar 

  • Zhai W, Lu H, Wu C et al (2013) Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014

    Google Scholar 

  • Zhang LW, Ma L, Cheung LK (2009) Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg 37(7):405–411

    Google Scholar 

  • Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997a) A quantitative assessment of osteoinductivity of human demineralized bone matrix. J Periodontol 68(11):1076–1084

    Google Scholar 

  • Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997b) Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 68(11):1085–1092

    Google Scholar 

  • Zhang W, Wang X, Wang S et al (2011) The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424

    Google Scholar 

  • Zhang Z (2011) Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med 5(4):401–413

    Google Scholar 

  • Zitzmann NU, Naef R, Schärer P (1997) Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 12(6):844

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinquan Jiang or Zhiyuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, X., Zhang, Z. (2015). Biomaterials Used for Maxillofacial Regeneration. In: Zreiqat, H., Dunstan, C., Rosen, V. (eds) A Tissue Regeneration Approach to Bone and Cartilage Repair. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13266-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13266-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13265-5

  • Online ISBN: 978-3-319-13266-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics