Advertisement

Biomaterials Used for Maxillofacial Regeneration

  • Xinquan JiangEmail author
  • Zhiyuan ZhangEmail author
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

Critical-sized bone defects in the maxillofacial region attributed to congenital maldevelopment, trauma, periodontal disease, or surgical ablation, as in the case of tumor surgery, and progressive resorption of the alveolar bone after tooth loss can cause damage to their structures, leading to noticeable deformity and dysfunction. Therefore, maxillofacial bone regeneration has been attracting great interest of many surgical specialties, specialties of dentistry, and experts in the region of stem cell and biomaterial. Clinical imperatives for maxillofacial bone regeneration require new therapies or procedures instead of autologous/allogeneic bone grafts. A variety of biomaterials have been developed as alternatives over a short period of time. This chapter reviews current clinical treatments and the biomaterials clinically used for maxillofacial bone regeneration. Moreover, recent advances and future directions in biomaterials used for maxillofacial bone regeneration have been discussed in the present chapter.

Keywords

Bone Graft Bone Defect Bone Regeneration Bioactive Glass Distraction Osteogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B: Rev 14(2):199–215Google Scholar
  2. Anderson HC, Garimella R, Tague SE (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10(1):822–837Google Scholar
  3. Andersson ÖH, Kangasniemi I (1991) Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mater Res 25(8):1019–1030Google Scholar
  4. Arimura H, Ouchi T, Kishida A et al (2005) Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable cross-linking agent. J Biomater Sci Polym Ed 16(11):1347–1358Google Scholar
  5. Aryal S, Bahadur KC, Dharmaraj N et al (2006) Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scripta Mater 54(2):131–135Google Scholar
  6. Auchincloss H Jr, Sachs DH (1998) Xenogeneic transplantation. Annu Rev Immunol 16(1):433–470Google Scholar
  7. Avera SP, Stampley WA, McAllister BS (1997) Histologic and clinical observations of resorbable and nonresorbable barrier membranes used in maxillary sinus graft containment. Int J Oral Maxillofac Implants 12(1):88Google Scholar
  8. Babbush CA (1998) The use of a new allograft material for osseous reconstruction associated with dental implants. Implant Dent 7(3):205–212Google Scholar
  9. Balani K, Anderson R, Laha T et al (2007) Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28(4):618–624Google Scholar
  10. Becker W, Clokie C, Sennerby L et al (1998) Histologic findings after implantation and evaluation of different grafting materials and titanium micro screws into extraction sockets: case reports. J Periodontol 69(4):414–421Google Scholar
  11. Blomqvist JE, Alberius P, Isaksson S (1998) Two-stage maxillary sinus reconstruction with endosseous implants: a prospective study. Int J Oral Maxillofac Implants 13(6):758Google Scholar
  12. Bons N, Lehmann S, Mestre-Francès N et al (2002) Brain and buffy coat transmission of bovine spongiform encephalopathy to the primate Microcebus murinus. Transfusion 42(5):513–516Google Scholar
  13. Bornstein MM, Chappuis V, von Arx T et al (2008) Performance of dental implants after staged sinus floor elevation procedures: 5 year results of a prospective study in partially edentulous patients. Clin Oral Implants Res 19:1034–1043Google Scholar
  14. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554Google Scholar
  15. Boyan BD, Ranly DM, Schwartz Z (2006) Use of growth factors to modify osteoinductivity of demineralized bone allografts: lessons for tissue engineering of bone. Dent Clin North Am 50:217–228Google Scholar
  16. Boyne PJ, Peetz M (1997) Osseous reconstruction of the maxilla and the mandible: surgical techniques using titanium mesh and bone mineral. Quintessence Publishing Company, New YorkGoogle Scholar
  17. Boyne PJ, James RA (1980) Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 38:613–616Google Scholar
  18. Bramfeld H, Sabra G, Centis V et al (2010) Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem 17(33):3944–3967Google Scholar
  19. Brekke J (1995) Architectural principles applied to three-dimensional therapeutic implants composed of bioresorbable polymers. encyclopedic handbook biomaterials and bioengineering part a: materials. Marcel Dekker Inc, Nwe York 689–731Google Scholar
  20. Buser D, Brägger U, Lang NP et al (1990) Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implant Res 1(1):22–32Google Scholar
  21. Buser D, Hoffmann B, Bernard J et al (1998) Evaluation of filling materials in membrane-protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implant Res 9(3):137–150Google Scholar
  22. Cai YZ, Wang LL, Cai HX et al (2010) Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. J Biomed Mater Res Part A 95(1):49–57Google Scholar
  23. Campbell LA (1998) Use of bone grafting in the management of a troublesome operative site planned for future implant restoration. J Oral Implantol 24(2):97–100Google Scholar
  24. Cano J, Campo J, Moreno LA et al (2006) Osteogenic alveolar distraction: a review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(1):11–28Google Scholar
  25. Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22(6):493–507Google Scholar
  26. Caplanis N, Sigurdsson TJ, Rohrer MD, et al. (1997) Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Int J Oral Maxillofacial Implants 12(5): 634–642Google Scholar
  27. Chandramohan MD, Marimuthu K (2011) Rapid prototyping/rapid tooling–a over view and its applications in orthopaedics. Int J Adv Eng Technol 2(4):435–448Google Scholar
  28. Cheung LK, Chua HDP, Hariri F, et al. (2010) Distraction osteogenesis. In: Andersson L, Kahnberg KE, Pogrel MA (eds) Oral and maxillofacial surgery. Wiley-Blackwell, Hoboken, pp 1027–1059Google Scholar
  29. Cho EC, Kim JW, Fernández-Nieves A et al (2008) Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett 8(1):168–172Google Scholar
  30. Christenson EM, Anseth KS, van den Beucken JJJP et al (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25(1):11–22Google Scholar
  31. Christgau M, Bader N, Schmalz G et al (1998) GTR therapy of intrabony defects using 2 different bioresorbable membranes: 12-month results. J Clin Periodontol 25(6):499–509Google Scholar
  32. Chu PK, Liu X (2008) Biomaterials fabrication and processing handbook. CRC Press, Boca RatonGoogle Scholar
  33. Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications. World Scientific, SingaporeGoogle Scholar
  34. Coulombe J, Faure H, Robin B et al (2004) In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun 323(4):1184–1190Google Scholar
  35. Fleming JE Jr, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 31(3):357–374Google Scholar
  36. Fowler EB, Breault LG, Rebitski G (2000) Ridge preservation utilizing an acellular dermal allograft and demineralized freeze-dried bone allograft: part I. A report of 2 cases. J Periodontol 71(8):1353–1359Google Scholar
  37. Fricain JC, Schlaubitz S, Le Visage C et al (2013) A nano-hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34(12):2947–2959Google Scholar
  38. Goldberg DA, Baer PN (1997) Restoration of localized severely atrophic maxillary ridge: case report. Periodontal Clinical Invest Official Publ Northeast Soc Periodontists 20(2):14–16Google Scholar
  39. Guillemin G, Patat JL, Fournie J et al (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21(5):557–567Google Scholar
  40. Gupta V, Aseh A, Ríos CN et al (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 4:115–122Google Scholar
  41. Habraken W, Wolke JGC, Mikos AG et al (2006) Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed 17(9):1057–1074Google Scholar
  42. Hammer C, Linke R, Wagner F et al (2009) Organs from animals for man. Int Arch Allergy Immunol 116(1):5–21Google Scholar
  43. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353Google Scholar
  44. He Y, Zhang Z, Zhu H et al (2007) Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. J Craniofac Surg 18(4):800–805Google Scholar
  45. Helm GA, Sheehan JM, Sheehan JP et al (1997) Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg 86(1):93–100Google Scholar
  46. Hench LL (2011) Bioactive materials for gene control. In: Hench LL, Jones JR, FennNew MB (eds) Materials and technologies for healthcare. World Scientific, Singapore, pp 25–48Google Scholar
  47. Hollinger JO, Schmitz JP, Mizgala JW et al (1989) An evaluation of two configurations of tricalcium phosphate for treating craniotomies. J Biomed Mater Res 23(1):17–29Google Scholar
  48. Hunter N (2002) Laboratory studies of bovine spongiform encephalopathy. Lancet 360(9331):488–489Google Scholar
  49. Hunter J (1974) Treatise on the boold, inflammation and gunshot wounds. Thomas, BradfordGoogle Scholar
  50. Ikeuchi M, Ito A, Dohi Y et al (2003) Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res A 67(4):1115–1122Google Scholar
  51. Jain RK, Au P, Tam J et al (2005) Engineering vascularized tissue. Nat Biotechnol 23(7):821–823Google Scholar
  52. James R, Deng M, Laurencin CT et al (2011) Nanocomposites and bone regeneration. Front Mater Sci 5(4):342–357Google Scholar
  53. Jensen SS, Aaboe M, Pinholt EM et al (1996) Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 11(1):55Google Scholar
  54. Jiang X (2011) On novel options for oromaxillofacial functional restoration. Int J prosthodont 25(2):132–134Google Scholar
  55. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486Google Scholar
  56. Juodzbalys G, Wang H-L (2007) Soft and hard tissue assessment of immediate implant placement: a case series. Clin Oral Implant Res 18:237–243Google Scholar
  57. Kim CK, Cho KS, Choi SH et al (1998) Periodontal repair in dogs: effect of allogenic freeze-dried demineralized bone matrix implants on alveolar bone and cementum regeneration. J Periodontol 69(1):26–33Google Scholar
  58. Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Target 15(4):241–252Google Scholar
  59. Kinoshita Y, Maeda H (2013) Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci World J 2013:21Google Scholar
  60. Kleinheinz J, Stratmann U, Joos U et al (2005) VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg 63(9):1310–1316Google Scholar
  61. Kumta SM, Leung PC, Griffith JF et al (1998) A technique for enhancing union of allograft to host bone. J Bone Joint Surg Br 80(6):994–998Google Scholar
  62. Lang NP, Tonetti MS, Suvan JE et al (2007) Immediate implant placement with transmucosal healing in areas of aesthetic priority: a multicentre randomized-controlled clinical trial I. Surgical outcomes. Clin Oral Implant Res 18:188–196Google Scholar
  63. Lemperle G, Morhenn VB, Pestonjamasp V et al (2004) Migration studies and histology of injectable microspheres of different sizes in mice. Plast Reconstr Surg 113(5):1380–1390Google Scholar
  64. Lin K, Chang J, Liu X et al (2011a) Synthesis of element-substituted hydroxyapatite with controllable morphology and chemical composition using calcium silicate as precursor. CrystEngComm 13(15):4850–4855Google Scholar
  65. Lin K, Liu X, Chang J et al (2011b) Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors. Nanoscale 3(8):3052–3055Google Scholar
  66. Lin K, Xia L, Gan J et al (2013a) Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl Mater Interfaces 5(16):8008–8017Google Scholar
  67. Lin K, Xia L, Li H et al (2013b) Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 34(38):10028–10042Google Scholar
  68. Liu X, Lin K, Chang J (2011) Modulation of hydroxyapatite crystals formed from α-tricalcium phosphate by surfactant-free hydrothermal exchange. CrystEngComm 13(6):1959–1965Google Scholar
  69. Marx RE (1993) Philosophy and particulars of autogenous bone grafting. Oral Maxillofac Surg Clin North Am 5:599–612Google Scholar
  70. Matsuno T, Hashimoto Y, Adachi S et al (2008) Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 27(6):827–834Google Scholar
  71. McMahon RE, Wang L, Skoracki R et al (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101(2):387–397Google Scholar
  72. Merkx MAW, Maltha JC, Stoelinga PJW (2003) Assessment of the value of an organic bone additives in sinus floor augmentation: a review of clinical reports. Int J Oral Maxillofac Surg 32(1):1–6Google Scholar
  73. Mitchell JC, Musanje L, Ferracane JL (2011) Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater 27(4):386–393Google Scholar
  74. Moroni L, De Wijn JR, Van Blitterswijk CA (2008) Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed 19(5):543–572Google Scholar
  75. Mors WA, Kaminski EJ (1975) Osteogenic replacement of tricalcium phosphate ceramic implants in the dog palate. Arch Oral Biol 20(5):365–367Google Scholar
  76. Müller FA, Gbureck U, Kasuga T et al (2007) Whisker-reinforced calcium phosphate cements. J Am Ceram Soc 90(11):3694–3697Google Scholar
  77. Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4(5):659–668Google Scholar
  78. Ohgushi H, Okumura M, Tamai S et al (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 24(12):1563–1570Google Scholar
  79. Parashis A, Andronikaki-Faldami A, Tsiklakis K (1998) Comparison of 2 regenerative procedures—guided tissue regeneration and demineralized freeze-dried bone allograft—in the treatment of intrabony defects: a clinical and radiographic study. J Periodontol 69(7):751–758Google Scholar
  80. Peltola SM, Melchels FPW, Grijpma DW et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280Google Scholar
  81. Piattelli A, Podda G, Scarano A (1997) Clinical and histological results in alveolar ridge enlargement using coralline calcium carbonate. Biomaterials 18:623–627Google Scholar
  82. Pina S, Sl Vieira, Rego P et al (2010) Biological responses of brushite-forming Zn- and ZnSrsubstituted beta-tricalcium phosphate bone cements. Eur Cell Mater 20:162–177Google Scholar
  83. Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S (2011) Electrospun composite nanofibers for tissue regeneration. J Nanosci Nanotechnol 11(4):3039–3057Google Scholar
  84. Price RL, Waid MC, Haberstroh KM et al (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24(11):1877–1887Google Scholar
  85. Roeder RK, Sproul MM, Turner CH (2003) Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J Biomed Mater Res, Part A 67(3):801–812Google Scholar
  86. Rosenberg E, Rose LF (1998) Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 42(3):467–490Google Scholar
  87. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441Google Scholar
  88. Rude RK, Gruber HE, Norton HJ et al (2005) Dietary magnesium reduction to 25 % of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37(2):211–219Google Scholar
  89. Sandor GKB, Kainulainen VT, Queiroz JO et al (2003) Preservation of ridge dimensions following grafting with coral granules of 48 post-traumatic and post-extraction dento-alveolar defects. Dent Traumatol 19(4):221–227Google Scholar
  90. Sàndor GKB, Lindholm TC, Clokie CML (2003a) Bone regeneration of the cranio-maxillofacial and dento-alveolar skeletons in the framework of tissue engineering. Topics in tissue engineeringGoogle Scholar
  91. Saulacic N, Zix J, Iizuka T (2009) Complication rates and associated factors in alveolar distraction osteogenesis: a comprehensive review. Int J Oral Maxillofac Surg 38(3):210–217Google Scholar
  92. Schofer MD, Veltum A, Theisen C et al (2011) Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med 22(7):1753–1762Google Scholar
  93. Simion M, Jovanovic SA, Tinti C et al (2001) Long-term evaluation of osseointegrated implants inserted at the time or after vertical ridge augmentation. Clin Oral Implant Res 12(1):35–45Google Scholar
  94. Singh M, Haverinen HM, Dhagat P et al (2010) Inkjet printing—process and its applications. Adv Mater 22(6):673–685Google Scholar
  95. Sitharaman B, Shi X, Walboomers XF et al (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43(2):362–370Google Scholar
  96. Skoglund A, Hising P, Young C (1997) A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants 12(2):194Google Scholar
  97. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B 39(3):125–131Google Scholar
  98. Sokolsky-Papkov M, Agashi K, Olaye A et al (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4):187–206Google Scholar
  99. Stevenson S (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 355:S239–S246Google Scholar
  100. Suhonen JT, Meyer BJA (1996) Polylactic acid (PLA) root replica in ridge maintenance after loss of a vertically fractured incisor. Dent Traumatol 12(3):155–160Google Scholar
  101. Sukumar S, Drízhal I (2008) Bone grafts in periodontal therapy. Acta Medica (Hradec Kralove) 51:203–207Google Scholar
  102. Sutradhar A, Paulino GH, Miller MJ, et al. (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. In: Proceedings of the National Academy of Sciences. 107(30):13222–13227Google Scholar
  103. Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899Google Scholar
  104. Valentini P, Abensur D, Densari D et al (1998) Histological evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implant Res 9(1):59–64Google Scholar
  105. Vargas GE, Durand LAH, Cadena V et al (2013) Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med 24(5):1261–1269Google Scholar
  106. Vasiliev AN, Zlotnikov E, Khinast JG et al (2008) Chemisorption of silane compounds on hydroxyapatites of various morphologies. Scripta Mater 58(12):1039–1042Google Scholar
  107. von Arx T, Hardt N, Wallkamm B (1996) The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants. Int J Oral Maxillofac Implants 11(3):387Google Scholar
  108. Wang H, Leeuwenburgh SCG, Li Y et al (2011a) The use of micro-and nanospheres as functional components for bone tissue regeneration. Tissue Eng Part B: Rev 18(1):24–39Google Scholar
  109. Wang S, Zhang Z, Zhao J et al (2009) Vertical alveolar ridge augmentation with β-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30(13):2489–2498Google Scholar
  110. Wang S, Zhang Z, Xia L et al (2010) Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone 46(1):91–100Google Scholar
  111. Wang S, Zhao J, Zhang W et al (2011b) Maintenance of phenotype and function of cryopreserved bone-derived cells. Biomaterials 32(15):3739–3749MathSciNetGoogle Scholar
  112. Wang S, Zhang W, Zhao J et al (2011c) Long-term outcome of cryopreserved bone-derived osteoblasts for bone regeneration in vivo. Biomaterials 32(20):4546–4555MathSciNetGoogle Scholar
  113. Weissman JL, Snyderman CH, Hirsch BE (1996) Hydroxyapatite cement to repair skull base defects: radiologic appearance. Am J Neuroradiol 17(8):1569–1574Google Scholar
  114. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. In: Proceedings of the National Academy of Sciences 99(8):4769–4774Google Scholar
  115. Wiesen M, Kitzis R (1997) Preservation of the alveolar ridge at implant sites. Periodontal Clin Inv Official Publ Northeast Soc Periodontists 20(2):17–20Google Scholar
  116. Woo KM, Chen VJ, Jung HM et al (2009) Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng Part A 15(8):2155–2162Google Scholar
  117. Wu C, Zhou Y, Xu M et al (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433Google Scholar
  118. Xia L, Lin K, Jiang X et al (2013) Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J Mater Chem B 1(40):5403–5416Google Scholar
  119. Xue W, Dahlquist K, Banerjee A et al (2008) Synthesis and characterization of tricalcium phosphate with Zn and Mg base dopants. J Mater Sci Mater Med 19(7):2669–2677Google Scholar
  120. Yang S, Leong KF, Du Z et al (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11Google Scholar
  121. Yeong WY, Chua CK, Leong KF et al (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652Google Scholar
  122. Yoshinari N, Tohya T, Mori A et al (1998) Inflammatory cell population and bacterial contamination of membranes used for guided tissue regenerative procedures. J Periodontol 69(4):460–469Google Scholar
  123. Zamani A, Mmrani GR, Nasab MM (2009) Lithium’s effect on bone mineral density. Bone 44(2):331–334Google Scholar
  124. Zeng D, Xia L, Zhang W et al (2012) Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits. Tissue Eng Part A 18(7–8):870–881Google Scholar
  125. Zhai W, Lu H, Wu C et al (2013) Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014Google Scholar
  126. Zhang LW, Ma L, Cheung LK (2009) Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg 37(7):405–411Google Scholar
  127. Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997a) A quantitative assessment of osteoinductivity of human demineralized bone matrix. J Periodontol 68(11):1076–1084Google Scholar
  128. Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997b) Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 68(11):1085–1092Google Scholar
  129. Zhang W, Wang X, Wang S et al (2011) The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424Google Scholar
  130. Zhang Z (2011) Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med 5(4):401–413Google Scholar
  131. Zitzmann NU, Naef R, Schärer P (1997) Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 12(6):844Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Shanghai Ninth Peoples HospitalShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations