Advertisement

Structure Based Data De-Anonymization of Social Networks and Mobility Traces

  • Shouling Ji
  • Weiqing Li
  • Mudhakar Srivatsa
  • Jing Selena He
  • Raheem Beyah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8783)

Abstract

We present a novel de-anonymization attack on mobility trace data and social data. First, we design an Unified Similarity (US) measurement, based on which we present a US based De-Anonymization (DA) framework which iteratively de-anonymizes data with an accuracy guarantee. Then, to de-anonymize data without the knowledge of the overlap size between the anonymized data and the auxiliary data, we generalize DA to an Adaptive De-Anonymization (ADA) framework. Finally, we examine DA/ADA on mobility traces and social data sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In: WWW 2007 (2007)Google Scholar
  2. 2.
    Narayanan, A., Shmatikov, V.: De-anonymizing Social Networks. In: S&P 2009 (2009)Google Scholar
  3. 3.
    Srivatsa, M., Hicks, M.: Deanonymizing Mobility Traces: Using Social Networks as a Side-Channel. In: CCS 2012 (2012)Google Scholar
  4. 4.
    Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets (De-anonymizing the Netflix Prize Dataset). In: S&P 2008 (2008)Google Scholar
  5. 5.
    Goodin, D.: Poorly anonymized logs reveal NYC cab drivers detailed whereabouts, http://arstechnica.com/tech-policy/2014/06/poorly-anonymized-logs-reveal-nyc-cab-drivers-detailed-whereabouts/
  6. 6.
    Singh, K., Bhola, S., Lee, W.: xBook: Redesigning Privacy Control in Social Networking Platforms. In: USENIX 2009 (2009)Google Scholar
  7. 7.
    Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: “These Aren’t the Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious Applications. In: CCS 2011 (2011)Google Scholar
  8. 8.
    Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS Applications. In: NDSS 2011 (2011)Google Scholar
  9. 9.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks 32, 245–251 (2010)CrossRefGoogle Scholar
  10. 10.
    Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E., Song, D.: Jointly Predicting Links and Inferring Attributes using a Social-Attribute Network (SAN). In: SNA-KDD 2012 (2012)Google Scholar
  11. 11.
    Bigwood, G., Rehunathan, D., Bateman, M., Henderson, T., Bhatti, S.: CRAWDAD data set st_andrews/sassy (v. 2011-06-03) (June 2011), Downloaded from http://crawdad.cs.dartmouth.edu/~crawdad/st_andrews/sassy/
  12. 12.
  13. 13.
    Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD data set cambridge/haggle (v. 2009-05-29) (May 2009), Downloaded from http://crawdad.cs.dartmouth.edu/cambridge/haggle
  14. 14.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: Extraction and Mining of Academic Social Networks. In: KDD 2008 (2008)Google Scholar
  15. 15.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User Interaction in Facebook. In: WOSN 2009 (2009)Google Scholar
  16. 16.
    Pham, H., Shahabi, C., Liu, Y.: EBM - An Entropy-Based Model to Infer Social Strength from Spatiotemporal Data. In: Sigmod 2013 (2013)Google Scholar
  17. 17.
    Ji, S., Li, W., Srivatsa, M., He, J., Beyah, R.: Technical Report: Data De-anonymization: From Mobility Traces to On-line Social Networks, http://users.ece.gatech.edu/~sji/Paper/isc14TechReport.pdf

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shouling Ji
    • 1
  • Weiqing Li
    • 1
  • Mudhakar Srivatsa
    • 2
  • Jing Selena He
    • 3
  • Raheem Beyah
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA
  3. 3.KSUKennesawUSA

Personalised recommendations