Skip to main content

Hybrid Model of Fixed and Floating Point Numbers in Secure Multiparty Computations

  • Conference paper
Information Security (ISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8783))

Included in the following conference series:

Abstract

This paper develops a new hybrid model of floating point numbers suitable for operations in secure multi-party computations. The basic idea is to consider the significand of the floating point number as a fixed point number and implement elementary function applications separately of the significand. This gives the greatest performance gain for the power functions (e.g. inverse and square root), with computation speeds improving up to 18 times in certain configurations. Also other functions (like exponent and Gaussian error function) allow for the corresponding optimisation.

We have proposed new polynomials for approximation, and implemented and benchmarked all our algorithms on the Sharemind secure multi-party computation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers. In: NDSS (2013)

    Google Scholar 

  2. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. International Journal of Information Security 11(6), 403–418 (2012)

    Article  Google Scholar 

  4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Catrina, O., Dragulin, C.: Multiparty computation of fixed-point multiplication and reciprocal. In: 20th International Workshop on Database and Expert Systems Application, DEXA 2009, pp. 107–111 (2009)

    Google Scholar 

  6. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Dahl, M., Ning, C., Toft, T.: On secure two-party integer division. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 164–178. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)

    Google Scholar 

  10. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite collision analysis. Cryptology ePrint Archive, Report 2013/850 (2013), http://eprint.iacr.org/

  12. Kerschbaum, F., Schroepfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh, S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain management. Computer 44(9), 38–43 (2011)

    Article  Google Scholar 

  13. Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers in secure multiparty computations. Cryptology ePrint Archive, Report 2014/221 (2014), http://eprint.iacr.org/

  14. Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database Manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Liedel, M.: Secure distributed computation of the square root and applications. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 277–288. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Liu, Y.-C., Chiang, Y.-T., Hsu, T.S., Liau, C.-J., Wang, D.-W.: Floating point arithmetic protocols for constructing secure data analysis application

    Google Scholar 

  17. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy Beyond K-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1) (March 2007)

    Google Scholar 

  18. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13, 1010–1027 (2001)

    Article  Google Scholar 

  19. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sweeney, L.: K-anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, Y., Steele, A., Blanton, M.: Picco: A general-purpose compiler for private distributed computation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, CCS 2013, pp. 813–826. ACM, New York (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Krips, T., Willemson, J. (2014). Hybrid Model of Fixed and Floating Point Numbers in Secure Multiparty Computations. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13257-0_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13256-3

  • Online ISBN: 978-3-319-13257-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics