Integrating Heterogeneous Engineering Tools and Data Models: A Roadmap for Developing Engineering System Architecture Variants

  • Richard Mordinyi
  • Dietmar Winkler
  • Florian Waltersdorfer
  • Stefan Scheiber
  • Stefan Biffl
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 200)

Abstract

Developing large systems engineering projects require combined efforts of various engineering disciplines. Each engineering group uses specific engineering tools and data model concepts representing interfaces to other disciplines. However, individual concepts lack in completeness and include strong limitations regarding interoperability and data exchange capabilities. Thus, highly heterogeneous data models cause semantic gaps that hinder efficient collaboration between various disciplines. The design of an integration solution within a systematic engineering process typically requires re-modelling of the common data model (used for mapping individual local tool data models) to enable efficient data integration. However, designing and implementing integration approaches include continuously collecting new knowledge on the related application domains, in our case automation systems engineering projects, and integration capability that meet requirements of related domains. In this paper we report on a sequence of different architectural designs for an efficient and effective integration solution that lead to a similar and stable data model design for application in the automation systems domain. By means of iterative prototyping, candidates for modelling styles were tested for feasibility in context of industry use cases. In addition we applied an adjusted Architecture Tradeoff Analysis Method (ATAM) to assess the resulting final architecture variant.

Keywords

Semantic integration Data modelling Service design Service modelling 

References

  1. 1.
    Adelman, S., Moss, L., Abai, M.: Data Strategy. Addison-Wesley Professional, Indianapolis (2005)Google Scholar
  2. 2.
    Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Proceedings of the 25th International Conference on Software Engineering, ICSE ’03, pp. 187–197. IEEE Computer Society, Washington, DC (2003)Google Scholar
  3. 3.
    Biffl, S., Schatten, A., Zoitl, A.: Integration of heterogeneous engineering environments for the automation systems lifecycle. In: 7th IEEE International Conference on Industrial Informatics, INDIN 2009, pp. 576–581 (2009)Google Scholar
  4. 4.
    Biffl, S., Schatten, A.: A platform for service-oriented integration of software engineering environments. In: Proceedings of the 2009 Conference on New Trends in Software Methodologies. Tools and Techniques: Proceedings of the Eighth SoMeT’09, pp. 75–92. IOS Press, Amsterdam (2009)Google Scholar
  5. 5.
    Boucké, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an architecture for decentralized control of a transportation system. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 180–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media, New York (2004)Google Scholar
  7. 7.
    Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding ui integration: a survey of problems, technologies, and opportunities. IEEE Internet Comput. 11(3), 59–66 (2007)CrossRefGoogle Scholar
  8. 8.
    Fan, H.: Investigating a Heterogeneous Data Integration Approach for Data Warehousing. Ph.D. Thesis, School of Computer Science & Information Systems Birkbeck College (2005)Google Scholar
  9. 9.
    Fay, A., Biffl, S., Winkler, D., Drath, R., Barth, M.: A method to evaluate the openness of automation tools for increased interoperability. In: Industrial Electronics Society, IECON 2013–39th Annual Conference of the IEEE, pp. 6844–6849, Nov 2013Google Scholar
  10. 10.
    Ferber, S., Heidl, P., Lutz, P.: Reviewing product line architectures: experience report of ATAM in an automotive context. In: van der Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, p. 364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston (1999)Google Scholar
  12. 12.
    Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv. 28(2), 415–435 (1996)CrossRefGoogle Scholar
  13. 13.
    Giordano, A.: Data Integration Blueprint and Modeling: Techniques for a Scalable and Sustainable Architecture. IBM Press, Pearson (2011)Google Scholar
  14. 14.
    Gritton, B.: Inter-enterprise integration x2014; moving beyond data level integration. In: OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, pp. 1–10 (2009)Google Scholar
  15. 15.
    Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06, pp. 9–16. VLDB Endowment (2006)Google Scholar
  16. 16.
    Hentrich, C., Zdun, U.: Patterns for business object model integration in process-driven and service-oriented architectures. In: Proceedings of the 2006 Conference on Pattern Languages of Programs, PLoP ’06, pp. 23:1–23:14. ACM, New York (2006)Google Scholar
  17. 17.
    Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2003)Google Scholar
  18. 18.
    IBM Coporation: How service-oriented architecture (soa) impacts your it infrastructure (2011-2008)Google Scholar
  19. 19.
    Islam, S., Rokonuzzaman, M.: Adaptation of atamsm to software architectural design practices for organically growing small software companies. In: 12th International Conference on Computers and Information Technology, ICCIT ’09, pp. 488–493 (2009)Google Scholar
  20. 20.
    Kamina, T., Tamai, T.: Lightweight scalable components. In: Proceedings of the 6th International Conference on Generative Programming and Component Engineering, GPCE ’07, pp. 145–154. ACM, New York (2007)Google Scholar
  21. 21.
    Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluation. Technical Report CMU/SEI-2000-TR-004, Carnegie Mellon Uiversity, Software Engineering Institute (2000)Google Scholar
  22. 22.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02, pp. 233–246. ACM, New York (2002)Google Scholar
  23. 23.
    Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley Professional, Reading (1999)Google Scholar
  24. 24.
    McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation rules. In: 19th International Conference on Data Engineering, 2003, Proceedings, pp. 227–238 (2003)Google Scholar
  25. 25.
    Meyer, B.: Reusability: the case for object-oriented design. IEEE Softw. 4(2), 50–64 (1987)CrossRefGoogle Scholar
  26. 26.
    Microsoft Corporation: Integration Patterns (Patterns & Practices). Microsoft Press (2004)Google Scholar
  27. 27.
    Mili, H., Mili, F., Mili, A.: Reusing software: issues and research directions. IEEE Trans. Softw. Eng. 21(6), 528–562 (1995)CrossRefGoogle Scholar
  28. 28.
    Kwakye, M.M., Kiringa, I., Viktor, H.L.: Merging multidimensional data models: a practical approach for schema and data instances. In: DBKDA 2013, The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications, pp. 100–107 (2013)Google Scholar
  29. 29.
    Moser, T., Biffl, S.: Semantic integration of software and systems engineering environments. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(1), 38–50 (2012)CrossRefGoogle Scholar
  30. 30.
    Paulheim, H.: Ontology-Based Application Integration. Springer, Berlin (2011)CrossRefGoogle Scholar
  31. 31.
    Pena, C., Bastarrica, M.C., Perovich, D.: Atam-hw: extending atam for explicitly incorporating hardware-related trade-off decisions. In: Proceedings of the 2010 XXIX International Conference of the Chilean Computer Science Society, SCCC ’10, pp. 119–123. IEEE Computer Society, Washington, DC (2010)Google Scholar
  32. 32.
    Raza, A., Abbas, H., Yngstrom, L., Hemani, A.: Security characterization for evaluation of software architectures using atam. In: International Conference on Information and Communication Technologies, ICICT ’09, pp. 241–246 (2009)Google Scholar
  33. 33.
    Reeve, A.: Managing Data in Motion: Data Integration Best Practice Techniques and Technologies (The Morgan Kaufmann Series on Business Intelligence). Morgan Kaufmann, Burlington (2013)Google Scholar
  34. 34.
    Reijonen, V., Koskinen, J., Haikala, I.: Experiences from scenario-based architecture evaluations with ATAM. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 214–229. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Mordinyi, R., Winkler, D.: F.W.S.B.: Ifs-cdl-14-15 - integrating heterogeneous engineering tools and data models: A roadmap for developing architecture variants. Technical report, Vienna University of Technology (2014)Google Scholar
  36. 36.
    Schafer, W., Wehrheim, H.: The challenges of building advanced mechatronic systems. In: 2007 Future of Software Engineering, FOSE ’07, pp. 72–84. IEEE Computer Society, Washington, DC (2007)Google Scholar
  37. 37.
    Schwinn, A., Schelp, J.: Design patterns for data integration. J. Enterp. Inf. Manag. 18(4), 471–482 (2005)CrossRefGoogle Scholar
  38. 38.
    Selby, R.: Enabling reuse-based software development of large-scale systems. IEEE Trans. Softw. Eng. 31(6), 495–510 (2005)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    van der Storm, T.: Generic feature-based software composition. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 66–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  41. 41.
    Waltersdorfer, F., Moser, T., Zoitl, A., Biffl, S.: Version management and conflict detection across heterogeneous engineering data models. In: 2010 8th IEEE International Conference on Industrial Informatics (INDIN), pp. 928–935 (2010)Google Scholar
  42. 42.
    Zhong, F.: Geological data integration and sharing on the semantic level. In: 2012 Fourth International Conference on Computational and Information Sciences (ICCIS), pp. 369–372 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Richard Mordinyi
    • 1
  • Dietmar Winkler
    • 1
  • Florian Waltersdorfer
    • 1
  • Stefan Scheiber
    • 1
  • Stefan Biffl
    • 1
  1. 1.Christian Doppler Laboratory, Software Engineering Integration for Flexible Automation SystemsVienna University of TechnologyViennaAustria

Personalised recommendations