Skip to main content

Recursive Computation of Spherical Harmonic Rotation Coefficients of Large Degree

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 3

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Computation of the spherical harmonic rotation coefficients or elements of Wigner’s d-matrix is important in a number of quantum mechanics and mathematical physics applications. Particularly, this is important for the fast multipole methods in three dimensions for the Helmholtz, Laplace, and related equations, if rotation-based decomposition of translation operators is used. In these and related problems related to representation of functions on a sphere via spherical harmonic expansions computation of the rotation coefficients of large degree n (of the order of thousands and more) may be necessary. Existing algorithms for their computation, based on recursions, are usually unstable, and do not extend to n. We develop a new recursion and study its behavior for large degrees, via computational and asymptotic analyses. Stability of this recursion was studied based on a novel application of the Courant-Friedrichs-Lewy condition and the von Neumann method for stability of finite-difference schemes for solution of PDEs. A recursive algorithm of minimal complexity \(O(n^{2})\) for degree n and FFT-based algorithms of complexity \(O\left( n^{2}\log n\right)\) suitable for computation of rotation coefficients of large degrees are proposed, studied numerically, and cross-validated. It is shown that the latter algorithm can be used for \(n \lesssim 10^{3}\) in double precision, while the former algorithm was tested for large n (up to \(10^{4}\) in our experiments) and demonstrated better performance and accuracy compared to the FFT-based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greengard L., Rokhlin V. A fast algorithm for particle simulations. J Comput Phys. 1987;73:325–348.

    Article  MATH  MathSciNet  Google Scholar 

  2. Rokhlin V. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl Comput Harmon Anal. 1993;1:82–93.

    Article  MATH  MathSciNet  Google Scholar 

  3. Epton M.A., Dembart B. Multipole translation theory for the three-dimensional Laplace and Helmholtz equations,” SIAM J Sci Comput. 1995;16(4):865–897.

    Article  MATH  MathSciNet  Google Scholar 

  4. Chew W.C., Jin J.-M., Michielssen E., Song J. Fast and efficient algorithms in computational electromagnetics. Boston: Artech House; 2001.

    Google Scholar 

  5. Gumerov N.A., Duraiswami R. Fast multipole methods for the Helmholtz Equation in three dimensions. Oxford: Elsevier; 2005.

    Google Scholar 

  6. White C.A., Head-Gordon M. Rotation around the quartic angular momentum barrier in fast multipole method calculations. J Chem Phys. 1996;105(12):5061–5067.

    Article  Google Scholar 

  7. Suda R., Takami M. A fast spherical harmonics transform algorithm. Math Comput. 2002;71(238):703–715.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng H., Crutchfield W.Y., Gimbutas Z., Greengard L., Ethridge F., Huang J., Rokhlin V., Yarvin N., Zhao J. A wideband fast multipole method for the Helmholtz equation in three dimensions, J Comput Phys. 2006;216:300–325,.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gumerov N.A., Duraiswami R. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. J Acoust Soc Am. 2009;125:191–205.

    Article  Google Scholar 

  10. Tang Z., Duraiswami R., Gumerov N.A. Fast algorithms to compute matrix-vector products for Pascal matrices. UMIACS TR 2004-08 and Computer Science Technical Report CS-TR 4563, University of Maryland, College Park; 2004.

    Google Scholar 

  11. Biedenharn L.C., Louck J.D. Angular momentum in quantum physics: theory and application. Reading: Addison-Wesley; 1981.

    MATH  Google Scholar 

  12. Ivanic J., Ruedenberg K. Rotation matrices for real spherical harmonics. Direct determination by recursion, J Phys Chem. 1996;100(15):6342–6347.

    Article  Google Scholar 

  13. Gumerov N.A., Duraiswami R. Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation. SIAM J Sci Comput. 2003;25(4):1344–1381.

    Article  MATH  MathSciNet  Google Scholar 

  14. Dachsel H. Fast and accurate determination of the Wigner rotation matrices in the fast multipole method. J Chem Phys. 2006;124:144115–144121.

    Article  Google Scholar 

  15. Gimbutas Z., Greengard L. A fast and stable method for rotating spherical harmonic expansions. J Comput Phys. 2009;228:5621–5627.

    Article  MATH  MathSciNet  Google Scholar 

  16. Courant R., Friedrichs K., Lewy,H. On the partial difference equations of mathematical physics. IBM J Res Dev. 1967;11(2):215–234. (English translation of original (in German) work “Uber die partiellen Differenzengleichungen der mathematischen Physik,” Mathematische Annalen, 100(1), 32–74, 1928).

    Article  MATH  MathSciNet  Google Scholar 

  17. Charney J.G., Fjortoft R., von Neumann J. Numerical intergation of the barotropic vorticity equation. Quarterly J Geophys, 1950;2(4):237–254.

    MathSciNet  Google Scholar 

  18. Wigner E.P. Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Braunchweig: Vieweg; 1931.

    Book  Google Scholar 

  19. Vilenkin N.J., Special functions and the theory of group representations. USA: American Methematical Society; 1968. (Translated from the original Russian edition of 1965).

    MATH  Google Scholar 

  20. Stein S. Addition theorems for spherical wave functions. Quart Appl Math. 1961;19:15–24.

    MATH  MathSciNet  Google Scholar 

  21. Gumerov N.A., Duraiswami R.Computation of scattering from clusters of spheres using the fast multipole method. J Acoust Soc Am. 2005;117(4):1744–1761.

    Article  Google Scholar 

  22. Abramowitz M., Stegun I.A. Handbook of mathematical functions.Washington, DC: National Bureau of Standards; 1972.

    MATH  Google Scholar 

  23. Nayfeh A.H. Perturbation methods. New-York: Wiley; 1973.

    MATH  Google Scholar 

  24. Gumerov N.A., Berlin K., Fushman D., Duraiswami R. A hierarchical algorithm for fast Debye summation with applications to small angle scattering. J Comput Chem. 2012; 33:1981–1996.

    Article  Google Scholar 

  25. Park W., Leibon G., Rockmore D.N., Chirikjian G.S. Accurate image rotation using Hermite expansions. IEEE Trans Image Proc. 2009;18:1988–2003.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail A. Gumerov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gumerov, N., Duraiswami, R. (2015). Recursive Computation of Spherical Harmonic Rotation Coefficients of Large Degree. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 3. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13230-3_5

Download citation

Publish with us

Policies and ethics