Skip to main content

The Algebra of Elimination

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 3

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Elimination with only the necessary row exchanges will produce the triangular factorization A = LPU, with the (unique) permutation P in the middle. The entries in L are reordered in comparison with the more familiar \(A={\widehat{P}\widehat{L}\widehat{U}}\) (where \({\widehat{P}}\) is not unique). Elimination with three other starting points 1, n and n, n and n, 1 produces three more factorizations of A, including the Wiener–Hopf form UPL and Bruhat’s \(U_1\,\pi\,U_2\) with two upper triangular factors.

All these starting points are useless for doubly infinite matrices. The matrix has no first or last entry. When A is banded and invertible, we look for a new way to establish A = LPU. The key is to locate the pivot rows (we also find the main diagonal of A). LPU was previously known in the periodic (block Toeplitz) case \(A(i,j)=A(i+b,j+b)\), by factoring a matrix polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert C, Li C-K, Strang G, Yu G. Permutations as products of parallel transpositions. SIAM J Discret Math. 2011;25(3):1412–17.

    Google Scholar 

  2. Asplund E. Inverses of matrices {a ij } which satisfy \(aij=0\) for \(j>i+p\). Math Scand. 1959;7:57–60.

    MATH  MathSciNet  Google Scholar 

  3. Bruhat F. Representations induites des groups de Lie semisimples complexes. Comptes Rendus Acad Sci Paris. 1954;238:437–9.

    MATH  MathSciNet  Google Scholar 

  4. Chandler-Wilde SN, Lindner M. Limit operators, collective compactness, and the spectral theory of infinite matrices. Providence: American Mathematical Society; 2011. (American Mathematical Society Memoirs, vol. 210, no. 989).

    Google Scholar 

  5. Chevalley C. Sur certains groupes simples. J Tôhoku Math. 1955;7(2):14–66.

    Google Scholar 

  6. de Boor, Carl. What is the main diagonal of a bi-infinite band matrix? Quantitative approximation (Proc. Internat. Sympos., Bonn, 1979), pp. 11–23, Academic Press, New York-London, 1980.

    Google Scholar 

  7. Elsner L. On some algebraic problems in connection with general eigenvalue algorithms. Lin Alg Appl 1979;26:123–38.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gohberg I, Goldberg S. Finite dimensional Wiener-Hopf equations and factorizations of matrices. Lin Alg Appl. 1982;48:219–36.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gohberg, Israel; Goldberg, Seymour; Kaashoek, Marinus A. Basic classes of linear operators. Birkhäuser Verlag, Basel, 2003. xviii+423 pp. ISBN: 3-7643-6930-2

    Google Scholar 

  10. Gohberg, I.; Kaashoek, M. A.; Spitkovsky, I. M. An overview of matrix factorization theory and operator applications. Factorization and integrable systems (Faro, 2000), 1–102, Oper. Theory Adv. Appl., 141, Birkhäuser, Basel, 2003

    Google Scholar 

  11. Grcar, Joseph F. How ordinary elimination became Gaussian elimination. Historia Math. 2011;38(2):163–218.

    Google Scholar 

  12. Harish-Chandra. On a lemma of Bruhat. J Math Pures Appl. 1956;35:203–10.

    Google Scholar 

  13. Hart, Roger. The Chinese roots of linear algebra. Johns Hopkins University Press, Baltimore, MD, 2011. xiv+286 pp. ISBN: 978-0-8018-9755-9

    Google Scholar 

  14. Kolotilina L Yu, Yeremin A Yu. Bruhat decomposition and solution of sparse linear algebra systems. Sov J Numer Anal Math Model. 1987;2:421–36.

    Google Scholar 

  15. Lindner, Marko. Infinite matrices and their finite sections. An introduction to the limit operator method. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. xv+191 pp. ISBN: 978-3- 7643-7766-3; 3-7643-7766-6

    Google Scholar 

  16. Lusztig G. Bruhat decomposition and applications. math.mit.edu/~gyuri.

    Google Scholar 

  17. Olshevsky V, Zhlobich P, Strang G. Green’s matrices. Lin Alg Appl. 2010;432:218–41.

    Google Scholar 

  18. Panova G. Factorization of banded permutations. Proc Am Math Soc. 2012;140:3805–12.

    Article  MATH  MathSciNet  Google Scholar 

  19. Plemelj J. Riemannsche Funktionenscharen mit gegebener Monodromiegruppe. Monat Math Phys. 1908;19:211–45.

    Article  MATH  MathSciNet  Google Scholar 

  20. Rabinovich VS, Roch S, Roe J. Fredholm indices of band-dominated operators. Integral Equ Oper Theory. 2004;49:221–38.

    Article  MATH  MathSciNet  Google Scholar 

  21. Rabinovich VS, Roch S, Silbermann B. The finite section approach to the index formula for band-dominated operators. Oper Theory. 2008;187:185–93.

    MathSciNet  Google Scholar 

  22. Shen, Kangshen; Crossley, John N.; Lun, Anthony W.-C. The nine chapters on the mathematical art. Companion and commentary. With forewords by Wentsn Wu and Ho Peng Yoke. Oxford University Press, New York; Science Press, Beijing, 1999. xiv+596 pp. ISBN: 0-19-853936–3

    Google Scholar 

  23. Strang G. Fast transforms: Banded matrices with banded inverses. Proc Natl Acad Sci. 2010;107:12413–16.

    Article  MATH  MathSciNet  Google Scholar 

  24. Strang G. Banded matrices with banded inverses and A = LPU, International Congress of Chinese Mathematicians, Beijing, 2010. Proceedings to appear.

    Google Scholar 

  25. Strang, Gilbert. Groups of banded matrices with banded inverses. Proc. Amer Math Soc. 2011;139(12):4255–64.

    Google Scholar 

Download references

Acknowledgements

This chapter was begun on a visit to the beautiful Hong Kong University of Science and Technology. We thank its faculty and its president Tony Chan for their warm welcome. On my final morning, George Lusztig happened to walk by—and he clarified the history of Bruhat. The books of Marko Lindner (and our email correspondence) introduced me to the limit analysis of non-Toeplitz infinite matrices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Strang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strang, G. (2015). The Algebra of Elimination. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 3. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13230-3_1

Download citation

Publish with us

Policies and ethics