Coastal Evaluation and Planning for Development of Subsurface Intake Systems

  • Abdullah H. A. Dehwah
  • Samir Al-Mashharawi
  • Thomas M. MissimerEmail author
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


The feasibility of using a subsurface intake system for a seawater reverse osmosis (SWRO) water treatment plant is based on the site-specific hydrogeologic conditions which control the type of intake design that can be used and the capacity of the intake. Planning for future development of subsurface intake systems requires a careful analysis of the shoreline and shallow offshore area. Example regions, the Red Sea coast of Saudi Arabia and the shoreline of Florida (USA), were investigated to develop general feasibility criteria for possible development of SWRO intake systems. Within the Red Sea, it was found that various well intake systems could be feasible for low-capacity SWRO facilities and high capacity intake systems would be limited to seabed gallery intakes. Coastal Florida had more subsurface intake options available, including wells, beach galleries, and seabed galleries which could be used based on the required capacity and the specific site conditions. The presence of high transmissivity carbonate aquifers containing seawater in Florida would allow medium capacity SWRO systems to use conventional vertical wells. High capacity systems could be developed using beach gallery systems in many locations. The methods developed for shoreline and nearshore evaluation contained herein could be applied to any coastal region of the world for subsurface intake evaluation.


Saudi Arabia Intake System Horizontal Well Feed Water Vertical Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Mashharawi, S., Dehwah, A. H. A., Bandar, K. B., & Missimer, T. M. (2014) Feasibility of using a subsurface intake for SWRO facility south of Jeddah, Saudi Arabia. Desalination and Water Treatment. doi: 10.1080/19443994.2014.939870
  2. Bemert, G., & Ormond, R. (1981). Red Sea coral reefs. London: Kegan Paul International.Google Scholar
  3. Berktay, A. (2011). Environmental approach and influence of red tide to desalination process in the Middle East region. International Journal of Chemical and Environmental Engineering, 2(3), 183–188.Google Scholar
  4. Bosworth, W., Huchon, P., & McClay, K. (2005). The Red Sea and Gulf of Aden basins. African Journal of Sciences, 43, 334–378.CrossRefGoogle Scholar
  5. Colontani, P., & Taviani, M. (1982). Morphological and ecological observations in the Sharn Obhor area and nearby coral reefs (Saudi Arabia, Red Sea). In 6th International Science Symposium Underwater Fed Troc Heriot-Watt (pp. 183–192).Google Scholar
  6. Davidson, R. (2010). Introduction to coastal processes and geomorphology. Cambridge: Cambridge University Press.Google Scholar
  7. Davis, R. A, Jr, & Fitzgerald, D. M. (2003). Beaches and coasts. New York: Wiley-Blackwell.Google Scholar
  8. Dehwah, A. H. E., & Missimer, T. M. (2013). Technical feasibility of using gallery intakes for seawater RO facilities, northern Red Sea coast of Saudi Arabia: The king Abdullah Economic City site. Desalination and Water Treatment, 51(34–36), 6472–6481. doi: 10.1080/19443994.2013.770949.CrossRefGoogle Scholar
  9. Dehwah, A. H. A., Al-Mashhawari, S., & Missimer, T. M. (2014). Mapping to assess feasibility of using subsurface intakes for SWRO, Red Sea coast of Saudi Arabia. Desalination and Water Treatment, 52, 2351–2361. doi: 10.1080/19443994.2013.862035.CrossRefGoogle Scholar
  10. DeVantier, L., & Pilcher, N. (2000). The status of coral reefs in Saudi Arabia. Global Coral Reef Monitoring Network (GCRMN).Google Scholar
  11. El Abd, Y. I., & Awad, M. B. (1991). Evaporitic sediment distributions in Al-Kharrar sabkha, west Red Sea coast of Saudi Arabia, as revealed from electrical soundings. Marine Geology, 97, 137–143.CrossRefGoogle Scholar
  12. Flemming, H.-C. (1997). Reverse osmosis membrane fouling. Experimental Thermal and Fluid Science, 14, 382–391.CrossRefGoogle Scholar
  13. Flemming, H.-C., Schaule, G., Griebe, T., Schmitt, J., & Tamachkiarowa, A. (1997). Biofouling—the Achilles heel of membrane processes. Desalination, 113, 215–225.CrossRefGoogle Scholar
  14. Florida Council of 100 (2003). Improving Florida’s water supply management. Tallahassee, FL: Florida Council of 100, September 2003.Google Scholar
  15. Gavish, E. (1980). Recent sabkhas marginal to the southern coasts of Sinai, Red Sea. In A. Nissenbaum (Ed.), Hypersaline brines and evaporative environments (pp. 23–51). Amsterdam: Elsevier.Google Scholar
  16. Head, S. M. (1987). Coral and coral reefs of the Red Sea. In A. J. Edwards & S. M. Head (Eds.), Red Sea (pp. 128–151). Oxford: Pergamon Press.CrossRefGoogle Scholar
  17. Hoepner, T., & Lattemann, S. (2002). Chemical impacts from seawater desalination plants—a case study of the northern Red Sea. Desalination, 152, 133–140.CrossRefGoogle Scholar
  18. Inman, D. L. (1953) Areal and seasonal variations in beach and nearshore sediments at LaJolla, California. Beach Erosion Control Board Technical Memorandum 39, (134 p). Washington, DC: Army Corps of Engineers.Google Scholar
  19. Inman, D. L., & Bagnold, R. A. (1963). Littoral processes. In M. N. Hill (Ed.), The sea, v. 3, The Earth beneath the sea. New York: Wiley.Google Scholar
  20. Inman, D. L., & Nordstrom, C. E. (1971). On the tectonic and morphologic classification of coasts. Journal of Geology, 79(1), 1–21.CrossRefGoogle Scholar
  21. Inman, D. L., & Dolan, R. (1989). The outer banks of North Carolina: Sediment budget and inlet dynamics along a migrating barrier island system. Journal of Coastal Research, 5(2), 193–237.Google Scholar
  22. Jenkins, S. A., & Wasyl, J. (2005) Coastal evolution model. Scripps Institution of Oceanography Technical Report 58. La Jolla: Scripps Institution of Oceanography.Google Scholar
  23. Kamphuis, J. W. (2010). Introduction to coastal engineering and management. London: World Scientific Publishing and Imperial College.CrossRefGoogle Scholar
  24. Komar, P. D., & Inman, D. L. (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75(30), 5914–5927.CrossRefGoogle Scholar
  25. Longuet-Higgins, M. S. (1970). Longshore currents generated by obliquely incident waves. Journal of Geophysical Research, 75(33), 6778–6789.CrossRefGoogle Scholar
  26. Lujan, L. R., & Missimer, T. M. (2014). Technical feasibility of a seabed gallery system for SWRO facilities at Shoaiba, Saudi Arabia and regions with similar geology. Desalination and Water Treatment. doi: 10.1080/19443994.2014.909630.
  27. Maliva, R. G., & Missimer, T. M. (2010). Self-cleaning beach gallery design for seawater desalination plants. Desalination and Water Treatment, 13(1–3), 88–95.CrossRefGoogle Scholar
  28. Mantilla, D., & Missimer, T. M. (2014) Seabed gallery intake technical feasibility for SWRO facilities at Shuqaiq, Saudi Arabia and other global locations with similar coastal characteristics. Journal of Applied Water Engineering and Research. doi: 10.1080/2349676.2014.895686.
  29. Matin, A., Khan, Z., Zaidi, S. M. J., & Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination, 281, 1–16.CrossRefGoogle Scholar
  30. Missimer, T. M. (2009). Water supply development, aquifer storage, and concentrate disposal for membrane water treatment facilities (2nd ed.). Sugarland, TX: Schlumberger Water Services.Google Scholar
  31. Missimer, T. M., Ghaffour, N., Dehwah, A. H. A., Rachman, R., Maliva, R. G., & Amy, G. (2013). Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics. Desalination, 322, 37–51. doi: 10.1016/j.desal.2013.04.021.CrossRefGoogle Scholar
  32. Missimer, T. M., Jadoon, K. Z., Li, D., Hoppe-Jones, C., & Al-Mashharawi, S. (2014a) Hydrogeology and water quality of a coastal alluvial aquifer and its potential use as an intake system for a seawater reverse osmosis water treatment system, Thuwal, Saudi Arabia. Hydrogeology Journal. doi: 10.1007/s10040-014-1168-3.
  33. Missimer, T. M., Maliva, R. G., Dehwah, A. H. A., & Phelps, D. (2014b) Use of beach galleries as an intake for future seawater desalination facilities in Florida and globally similar areas. Desalination and Water Treatment, 52(1–3), 1–8. doi: 10.1080/19443994.2013.808406.
  34. Morcos, S. A. (1970). Physical and chemical oceanography of the Red Sea. Journal of Oceanography and Marina Biology, 8, 73–202.Google Scholar
  35. Pedgley, D. E. (1974). An outline of the weather and climate of the Red Sea. In: L’oceanography physique de las Mer Rouge (pp. 9–27). Paris: CNEXO.Google Scholar
  36. Rachman, R. M., Li, S., & Missimer, T. M. (2014). SWRO feed water quality improvement using subsurface intakes in Oman, Spain, Turks and Caicos Islands, and Saudi Arabia. Desalination. doi: 10.1016/j.desal.2014.07.032.
  37. Sesler, K., & Missimer, T. M. (2012). Technical feasibility of using seabed galleries for seawater RO intakes and pretreatment: Om Al Misk Island, Red Sea, Saudi Arabia. IDA Journal: Desalination and Water Reuse, 4(4), 42–48.Google Scholar
  38. Sofianos, S. S., Johns, W. E., & Murray, S. P. (2002). Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep Sea Research Part III, 49, 1323–1340.CrossRefGoogle Scholar
  39. Sofianos, S. S., & Johns, W. E. (2003). An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, three-dimensional circulation in the Red Sea. Journal of Geophysical Research: Oceans, 107(C11), 17-1–17-11.Google Scholar
  40. Sorensen, R. M. (2005). Basic coastal engineering (3rd ed.). New York: Springer.Google Scholar
  41. Sunamura, T. (1992). Geomorphology of rocky coasts. New York: Wiley.Google Scholar
  42. Tanner, W. F. (1960). Florida coastal classification. Gulf Coast Association of Geological Societies Transactions, 10, 259–266.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abdullah H. A. Dehwah
    • 1
  • Samir Al-Mashharawi
    • 1
  • Thomas M. Missimer
    • 2
    Email author
  1. 1.Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.U.A. Whitaker College of EngineeringFlorida Gulf Coast UniversityFort MyersUSA

Personalised recommendations