Advertisement

Effects of Intake Depth on Raw Seawater Quality in the Red Sea

  • Abdullah H. A. Dehwah
  • Sheng Li
  • Samir Al-Mashharawi
  • Francis L. Mallon
  • Zenon Batang
  • Thomas M. MissimerEmail author
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

It has been suggested that using a deep open-ocean intake would improve feed water quality and would reduce the cost of SWRO water treatment by lessening membrane biofouling potential. The feasibility of developing deep intake systems for large-capacity SWRO plants located on the Red Sea was assessed. A bathymetric survey showed that the continental shelf along the Red Sea nearshore has a nearly vertical drop into deep water beginning at depths between 20 and 40 m. The vertical nature of the bathymetric profile and the issue of active seismicity make the development of a SWRO intake at a depth of greater than 100 m below surface a very risky venture along the Red Sea coast of Saudi Arabia. Detailed assessment of temperature and salinity with depth show a decrease of 5 °C and an increase of 1100 mg/L respectively over 90 m. Concentrations of algae, bacteria, total organic carbon, particulate and colloidal TEP, and the biopolymer fraction of natural organic carbon all showed declines in concentration. However, the general water quality improvements in reduced concentrations of organic matter were insufficient to reduce the intensity of pretreatment for an SWRO system. Overall, the Red Sea does not appear to be a good location for the use of deep SWRO intakes because of the structural risk of installing and maintaining an intake at near or below 100 m of water depth.

Keywords

Natural Organic Matter Alcian Blue Transparent Exopolymer Particle Transparent Exopolymer Particle Concentration Membrane Biofouling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding for this research was provided by the Water Desalination and Water Reuse and the Red Sea Centers at King Abdullah University of Science and Technology. The authors thank the ownership and staff at the Moya Bushnak Company for access to the SWRO facility with the deep intake and engineer Mohamed Arfin for allowing facility access and giving water sampling assistance. The authors thank the Center for Marine Operations and Research (CMOR) led by Dr. Abdulaziz Mohammed Al-Suwailem and the Red Sea Center for providing equipment of bathymetric surveying and the vessel and assistance in collection of offshore water quality data and samples.

References

  1. Alldredge, A. L., Passow, U., & Logan, B. E. (1993). The adundance and significance of a class of large, transparent organic particules in the ocean. Deep Sea Research, Part 1, 40(6), 1131–1140.CrossRefGoogle Scholar
  2. Azetsu-Scott, K., & Passow, U. (2004). Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean. Limnology and Oceanography, 49(3), 741–748.CrossRefGoogle Scholar
  3. Bar-Zeev, E., Berman-Frank, I., Liberman, B., Rahav, E., Passow, U., & Berman, T. (2009). Transparent exopolymer particles: Potential agents for organic fouling and biofilm formation in desalination and water treatment plants. Desalination and Water Treatment, 3, 136–142.CrossRefGoogle Scholar
  4. Berman, T. (2010). Biofouling: TEP-a major challenge for water separation. Filtration and Separation, 47(2), 20–22.CrossRefGoogle Scholar
  5. Berman, T., Mizrahi, R., & Dosoretz, C. G. (2011). Transparent exopolymer particles (TEP): A critical factor in aquatic biofilm initiation and fouling on filtration membranes. Desalination, 276, 184–190.CrossRefGoogle Scholar
  6. Berman, T., & Passow, U. (2007). Transparent exopolymer particles (TEP): An overlooked factor in the process of biofilm formation in aquatic environments. Nature Precedings. doi: 10.1038/npre.2007.1182.1.
  7. Cartier, G, & Corsin, P. (2007). Description of different water intakes for SWRO plants. In Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Gran Canaria, Spain, October 21–26, 2007, Paper IDAWC/MP07-185.Google Scholar
  8. Dehwah, A. H. A., Li, S., Al-Mashharawi, S., Rachman, R. M., Winters, H., & Missimer, T. M. (2014). The influence of beach well and deep ocean intakes on TEP reduction in SWRO desalination systems, Jeddah, Saudi Arabia. AWWA/AMTA Membrane Technology Conference Proceedings, Las Vegas, Nevada, March 10–13, 2013, 18 pp.Google Scholar
  9. El-Isa, Z. H., & Shanti, A. (1989). Seismicity and tectonics of the Red Sea and western Arabia. Geophysical Journal, 97, 449–457.CrossRefGoogle Scholar
  10. Engle, A. (2004). Distribution of transparent exopolymer particles (TEP) in the northwest Atlantic Ocean and their significance for aggregation processes. Deep Ocean Research Part 1, 51(1), 83–92.CrossRefMathSciNetGoogle Scholar
  11. Gille, D. (2003). Seawater intakes for desalination plants. Desalination, 156(1–3), 249–256.CrossRefGoogle Scholar
  12. Goosen, M. F. A., Sablani, S. S., Al-Maskari, S. S., Al-Belushi, R. H., & Wilf, M. (2002). Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems. Desalination, 144, 367–372.CrossRefGoogle Scholar
  13. Hayashi, M., Ikeda, T., Otsuka, K., & Takahashi, M. M. (2003). Assessment on environmental effects of deep ocean water discharged into coastal sea. In: Saxena, N. (ed.) Marine Science and Technology, PACON International, 535–546.Google Scholar
  14. Huber, S. A., Balz, A., Abert, M., & Pronk, W. (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—organic carbona detection—organic nitrogen detection (LC-OCD-OND). Water Research, 45(2), 879–885.CrossRefGoogle Scholar
  15. Ito, Y., Hanada, S., Kitade, T., Tanaka, Y., & Kurihara, M. (2013). Clarification of impact of biofouling triggered by chemical addition for designing of Mega-Ton SWRO plant. In Proceedings of the International Desalination Association World Congress 0n Desalination and Water Reuse, Tianjin, China. Paper IDAWC/TIAN13-062.Google Scholar
  16. Johnson, B. D., & Kepkay, P. E. (1992). Colloid transport and bacterial utilization of oceanic DOC. Deep-Sea Research, Part A, 39(5A), 855–869.CrossRefGoogle Scholar
  17. Mari, X. (2008). Does ocean acidification induce upward flux of marine aggregates? Biogeosciences, 5(4), 1023–1031.CrossRefMathSciNetGoogle Scholar
  18. Michel, C., Lapoussiere, A., LeBlanc, B., & Starr, M. (2006). Transparent exopolymeric substances (TEP) in Hudson Bay during fall. Significance and potential roles. Reunion Scientifique Annuelle d’Arcticnet, Victoria, Colombrie-Britanique (one sheet).Google Scholar
  19. Passow, U. (2000). Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Marine Ecology Progress Series, 192, 1–11.CrossRefGoogle Scholar
  20. Passow, U. (2002a). Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Marine Ecology Progress Series, 236, 1–12.CrossRefGoogle Scholar
  21. Passow, U. (2002b). Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55(3–4), 287–333.Google Scholar
  22. Passow, U., & Alldredge, A. L. (1994). Distribution, size and bacterial-colonization of transparent exopolymer particles (TEP) in the ocean. Marine Ecology Progress Series, 113(1–2), 185–198.Google Scholar
  23. Passow, U., & Alldredge, A. L. (1995). A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particules (TEP). Limnology and Oceanography, 40, 1326–1335.CrossRefGoogle Scholar
  24. Passow, U., Shipe, R. E., Murray, A., Pak, D. K., Brzezinski, M. A., & Alldredge, A. L. (2001). The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Continental Shelf Research, 21(4), 327–346.Google Scholar
  25. Ortega-Retuerta, E., Reche, I., Pulido-Villena, E., Agusti, S., & Duarte, C. M. (2009). Marine Chemistry, 115, 59–65.CrossRefGoogle Scholar
  26. Radic, T., Ivancic, I., Kuks, D., & Radic, J. (2006). Marine bacterioplankton production of polysaccharidic and proteinaceous particles under different nutrient regimes. FEMS Mircobiology Ecology, 58(3), 333–342.CrossRefGoogle Scholar
  27. Stodergger, K., & Herndl, G. J. (1998). Production and release of bacterialcapsular material and its subsequent utilization by marine bacterioplankton. Limnology and Oceanography, 43(5), 877–884.CrossRefGoogle Scholar
  28. Stodergger, K., & Herndl, G. J. (1999). Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Marine Ecology Progress Series, 189, 9–16.CrossRefGoogle Scholar
  29. Sugimoto, K., Fukuda, H., Baki, M. A., & Koike, I. (2007). Bacterial contributions to formation of transparent exopolymer particles (TEP) and seasonal trends in coastal waters of Sagami Bay. Japan. Aquatic Microbial Ecology, 46(1), 31–41.CrossRefGoogle Scholar
  30. Takahashi, M., & Ikeya, T. (2003). Ocean fertilization using deep ocean water (DOW). Deep Ocean Water Research, 4, 73–87.Google Scholar
  31. Takahashi, M., & Huang, P.-Y. (2012). Novel renewable natural resource of deep ocean water (DOW) and their current and future practical applications. Kuroshio Science, 6, 101–113.Google Scholar
  32. Takahashi, M., & Yamashita, K. (2005). Clean and safe supply of fish and shellfish to clear the HACCP regulation by use of clean and cold water in Rausu, Hokkaido, Japan. Japan Journal of Oceanography, 4, 219–223.Google Scholar
  33. Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., & Zehnder, A. J. B. (1989). Bacterial adhesion-a physicochemical approach. Microbial Ecology, 17(1), 1–15.CrossRefGoogle Scholar
  34. Villacorte, L. O., Kennedy, M. D., Amy, G. L., & Schippers, J. C. (2009). Measuring transparent exopolymer particles (TEP) as indicator of the biofouling potential of RO feed water. Desalination & Water Treatment, 5, 207–212.CrossRefGoogle Scholar
  35. Wilf, M. (2007). The guidebook to membrane desalination technology. Balaban Desalination Publications, L’Aquila, Italy.Google Scholar
  36. Wurl, O., Miller, L., & Vagle, S. (2001). Production and fate of transparent exopolymer particles (TEP) in the ocean. Journal of Geophysical Research Oceans 116(1) C00H13, doi: 10.1029/2011JC0077342.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abdullah H. A. Dehwah
    • 1
  • Sheng Li
    • 1
  • Samir Al-Mashharawi
    • 1
  • Francis L. Mallon
    • 2
  • Zenon Batang
    • 2
  • Thomas M. Missimer
    • 3
    Email author
  1. 1.Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Coastal and Marine Resources Core LabKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.U.A. Whitaker College of EngineeringFlorida Gulf Coast UniversityFLUSA

Personalised recommendations