Advertisement

Observing, Monitoring and Evaluating the Effects of Discharge Plumes in Coastal Regions

  • Burton JonesEmail author
  • Elizabeth Teel
  • Bridget Seegers
  • Matthew Ragan
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Our ability to predict, observe, and monitor the performance of ocean outfall discharges is rapidly transforming through advances in numerical modeling, remote sensing and underwater vehicle technology. The rapid implementation of sensor and AUV technology has transformed our ability to monitor effluent plumes from coastal discharges of both brine and wastewater. Advances in remote sensing technology provide new views of anthropogenic discharges into coastal seas and oceans. Improved spatial and temporal resolution of coastal models provides more comprehensive dispersion estimates from these discharges. The combined capabilities now provide more detailed observations of the oceanographic processes affecting the dispersion of these discharges and produce statistical maps of the dispersion of properties related to the effluents. These results will contribute to management and design of ocean outfalls and enable better interpretation of discharge effects on coastal ocean ecosystems.

Keywords

Internal Wave Coastal Ocean Colored Dissolve Organic Matter Domoic Acid Autonomous Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The activities supporting the observations presented took place between 2009 and 2012. Those whose efforts contributed to the success of the observations include Ivona Cetinic, Carl Oberg, Arvind Pereira, the Orange County Sanitation District Environmental Monitoring Division, and Ray Arntz and Kayaa Heller from Sundiver for their operational support that was essential to the success of these efforts. Financial support for the research was provided by USC Sea Grant, Orange County Sanitation District, the National Oceanographic and Atmospheric Administration’s ECOHAB and MERHAB programs, the Southern California Coastal Ocean Observation System (part of NOAA IOOS), and King Abdullah University of Science and Technology.

References

  1. Anderson, D. M., Burkholder, J. M., Cochlan, W. P., Glibert, P. M., Gobler, C. J., Heil, C. A., et al. (2008). Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 8, 39–53.CrossRefGoogle Scholar
  2. Blumberg, A. F., & Connolly, J. P. (1996). Modeling fate and transport of pathogenic organisms in Mamala Bay. Hawaii, USA: Honolulu.Google Scholar
  3. Bogucki, D. J., Jones, B. H., & Carr, M. E. (2005). Remote measurements of horizontal eddy diffusivity. Journal of Atmospheric and Oceanic Technology, 22, 1373–1380.CrossRefGoogle Scholar
  4. California Environmental Protection Agency, S. W. R. C. B. (2012). Water quality control plan: Ocean waters of California. In C. E. P. A. (Ed.), State water resources control board. Sacramento, California: State Water Resources Control Board.Google Scholar
  5. Camilli, R., & Duryea, A. N. (2009). Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry. Environmental Science and Technology, 43, 5014–5021.CrossRefGoogle Scholar
  6. Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A. S., Jakuba, M. V., Kinsey, J. C., et al. (2010). Tracking hydrocarbon plume transport and biodegradation at deepwater horizon. Science, 330, 201–204.CrossRefGoogle Scholar
  7. Chao, Y., LiIZ, J., Farrara, J. D., Moline, M. A., Schofield, O. M. E., & Majumdar, S. J. (2008). Synergistic applications of autonomous underwater vehicles and regional ocean modeling system in coastal ocean forecasting. Limnology and Oceanography, 53, 2251–2263.CrossRefGoogle Scholar
  8. Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402–418.CrossRefGoogle Scholar
  9. Corson, M. R., Korwan, D. R., Lucke, R. L., Snyder, W. A., & Davis, C. O. (2008). The hyperspectral imager for the Coastal Ocean (HICO) on the international space station. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008 (pp. 101–104). Piscataway: IEEE.Google Scholar
  10. D’sa, E. J., & Miller, R. L. (2003). Bio-optical properties in waters influenced by the Mississippi River during low flow conditions. Remote Sensing of Environment, 84, 538–549.CrossRefGoogle Scholar
  11. Haile, R. W., Witte, J. S., Gold, M., Cressy, R., McGee, C., Millikan, R. C., et al. (1999). The health effects of swimming in ocean water contaminated by storm drain runoff. Epidemiology, 10, 355–363.CrossRefGoogle Scholar
  12. Hong, G. H., Yang, D. B., Lee, H. M., Yang, S. R., Chung, H. W., Kim, C. J., et al. (2012). Surveillance of waste disposal activity at sea using satellite ocean color imagers: GOCI and MODIS. Ocean Science Journal, 47, 387–394.CrossRefGoogle Scholar
  13. Howard, M. D., Sutula, M., Caron, D., Chao, Y., Farrara, J., Frenzel, H., et al. (2012). Comparison of natural and anthropogenic nutrient sources in the Southern California Bight. In K. Schift (Ed.), Southern California coastal water research project—Annual report. Costa Mesa, California, USA: Southern California Coastal Water Research Project.Google Scholar
  14. Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, 48, 624–649.CrossRefGoogle Scholar
  15. Johnson, K. S., & Coletti, L. J. (2002). In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research Part I-Oceanographic Research Papers, 49, 1291–1305.CrossRefGoogle Scholar
  16. Jones, B. H., Bratovich, A., Dickey, T. D., Kleppel, G., Steele, A., Iturriaga, R., & Haydock, I. (1990). Variability of physical, chemical, and biological parameters in the vicinity of an ocean outfall plume. In E. J. List & G. H. JirkaI (Eds.), 3rd International Conference on Stratified Flows, 1987 Pasadena (pp. 877–890). CA: American Society of Civil Engineers.Google Scholar
  17. Kratzer, S., Brockmann, C., & Moore, G. (2008). Using MERIS full resolution data to monitor coastal waters—A case study from Himmerfjarden, a fjord-like bay in the northwestern Baltic Sea. Remote Sensing of Environment, 112, 2284–2300.CrossRefGoogle Scholar
  18. Lee, Z. P., Carder, K. L., Hawes, S. K., Steward, R. G., Peacock, T. G., & Davis, C. O. (1994). Model for the interpretation of hyperspectral remote-sensing reflectance. Applied Optics, 33, 5721–5732.CrossRefGoogle Scholar
  19. Noble, M., Jones, B., Hamilton, P., Xu, J., Robertson, G., Rosenfeld, L., & Largier, J. (2009). Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA. Continental Shelf Research, 29, 1768–1785.CrossRefGoogle Scholar
  20. Paul, J. H., Rose, J. B., Jiang, S. C., London, P., Xhou, X. T., & Kellogg, C. (1997). Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii. Applied and Environmental Microbiology, 63, 133–138.Google Scholar
  21. Petrenko, A. A., Jones, B. H., Dickey, T. D., Lenaitre, M., & Moore, C. (1997). Effects of a sewage plume on the biology, optical characteristics, and particle size distributions of coastal waters. Journal of Geophysical Research-Oceans, 102, 25061–25071.CrossRefGoogle Scholar
  22. Ramos, P. A. G. (2013). Geostatistical prediction of ocean outfall plume characteristics based on an autonomous underwater vehicle regular paper. International Journal of Advanced Robotic Systems, 10, 289. doi: 10.5772/56644.Google Scholar
  23. Ramos, P., & Neves, M. V. (2008). Environmental impact assessment and management of sewage outfall discharges using AUV’S. In A. V. Inzartsev (Ed.), Underwater vehicles. Vienna, Austria: I-Tech.Google Scholar
  24. Reifel, K. M., Johnson, S. C., Digacomo, P. M., Mengel, M. J., Nezlin, N. P., Warrick, J. A., & Jones, B. H. (2009). Impacts of stormwater runoff contaminants in the Southern California Bight: Relationships among plume constituents. Continental Shelf Research, 29, 1821–1835.CrossRefGoogle Scholar
  25. Roberts, P. J. W., Hunt, C. D., Mickelson, M. J., & Tian, X. D. (2011). Field and model studies of the Boston outfall. Journal of Hydraulic Engineering-Asce, 137, 1415–1425.CrossRefGoogle Scholar
  26. Rogowski, P., Terrill, E., Otero, M., Hazard, L., & Middleton, W. (Eds.). (2011). Mapping ocean outfall plumes and their mixing using autonomous underwater vehicles, in international symposium on outfall systems, Mar del Plata: Argentina.Google Scholar
  27. Rogowski, P., Terrill, E., Otero, M., Hazard, L., & Middleton, W. (2012). Mapping ocean outfall plumes and their mixing using autonomous underwater vehicles. Journal of Geophysical Research-Oceans, 117, Doi:  10.1029/2011gc7804.
  28. Rogowski, P., Terrill, E., Otero, M., Hazard, L., & Middleton, W. (2013). Ocean outfall plume characterization using an autonomous underwater vehicle. Water Science and Technology, 67, 925–933.CrossRefGoogle Scholar
  29. Rudnick, D. L., & Perry, M. J. (2003). ALPS: Autonomous and Lagrangian Platforms and Sensors, p. 64. Workshop Report. http://www.geo-prose.com/ALPS.
  30. Scholin, C., Jensen, S., Roman, B., Massion, E., Marin, R., Preston, C., et al. (2006). The environmental sample processor (ESP)—An autonomous robotic device for detecting microorganisms remotely using molecular probe technology. Oceans, 2006(1–4), 1179–1182.Google Scholar
  31. Scholin, C., Doucette, G., Jensen, S., Roman, B., Pargett, D., Marin, R., et al. (2009). Remote detection of marine microbes, small invertebrates, harmful algae, and biotoxins using the environmental sample processor (Esp). Oceanography, 22, 158–167.CrossRefGoogle Scholar
  32. Seegers, B. N., Birch, J. M., Marin, R., Scholin, C. A., Caron, D. A., Seubert, E. L., Howard, M. D. A., Robertson, G. L., & Jones, B. H. (2014). Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in Southern California. Limnology and Oceanography (in review).Google Scholar
  33. Short, R. T., Fries, D. P., Kerr, M. L., Lembke, C. E., Toler, S. K., Wenner, P. G., & Byrne, R. H. (2001). Underwater mass spectrometers for in situ chemical analysis of the hydrosphere. Journal of the American Society for Mass Spectrometry, 12, 676–682.CrossRefGoogle Scholar
  34. Smith, R. N., Schwager, M., Smith, S. L., Jones, B. H., Rus, D., & Sukhatme, G. S. (2011). Persistent ocean monitoring with underwater gliders: Adapting sampling resolution. Journal of Field Robotics, 28, 714–741.CrossRefGoogle Scholar
  35. Svejkovsky, J., Nezlin, N. P., Mustain, N. M., & Kum, J. B. (2010). Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery. Estuarine, Coastal and Shelf Science, 87, 387–398.CrossRefGoogle Scholar
  36. Todd, R. E., Rudnick, D. L., & Davis, R. E. (2009). Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. Journal of Geophysical Research-Oceans, 114. Artn C06001, Doi: 10.1029/2008jc005086.
  37. Turner, R. K., Subak, S., & Adger, W. N. (1996). Pressures, trends, and impacts in coastal zones: Interactions between socioeconomic and natural systems. Environmental Management, 20, 159–173.CrossRefGoogle Scholar
  38. Uchiyama, Y., Idica, E. Y., McWilliams, J. C., & Stolzenbach, K. D. (2014). Wastewater effluent dispersal in Southern California Bays. Continental Shelf Research, 76(1), 36–52. doi: 10.1016/j.csr.2014.01.002.
  39. Van der Merwe, R. (2014). Marine monitoring and environmental management of SWRO concentrate discharge: A case study of the KAUST SWRO plant. Thuwal: King Abdullah University of Science and Technology.Google Scholar
  40. Wenner, P. G., Bell, R. J., Van Amerom, F. H. W., Toler, S. K., Edkins, J. E., Hall, M. L., et al. (2004). Environmental chemical mapping using an underwater mass spectrometer. Trac-Trends in Analytical Chemistry, 23, 288–295.CrossRefGoogle Scholar
  41. Wu, Y. C., Washburn, L., & Jones, B. H. (1994). Buoyant plume dispersion in a coastal environment—Evolving plume structure and dynamics. Continental Shelf Research, 14, 1001–1023.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Burton Jones
    • 1
    Email author
  • Elizabeth Teel
    • 1
  • Bridget Seegers
    • 1
  • Matthew Ragan
    • 1
  1. 1.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations