Skip to main content

Intelligent Collision Avoidance between Autonomous Agents Using Adaptive Local Views

  • Conference paper
PRIMA 2014: Principles and Practice of Multi-Agent Systems (PRIMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8861))

  • 1303 Accesses

Abstract

We propose a nature-inspired, intelligent collision management approach for use by multiple autonomous agents. This approach is calculated by each agent involved in possible collision through its own local view and without communication with other agents or central control. The approach uses both the current position and the velocity of other local agents to compute a future trajectory in order to both predict collision and avoid it. Our approach is capable of dealing with static obstacles and is developed in conjunction with a common kinematics metric ‘Minimal Predicted Distance (MPD)’ ensuring all agents remain free of collision while attempting to follow their goal direction, thus making the procedure well-suited for real-time applications. We build on prior work related to rectangular roundabout (‘rectabout’) and introduce the concept of hybrid rectabout for collision avoidance that takes into account heterogeneous agents, i.e. variable speed and variable size. Each agent has its own speed (and local view), and senses its surroundings and acts independently without central coordination or communication with other agents. We apply our hybrid rectabout maneuver to WowWee Rovio mobile robots and provide both analytic and empirical results to show that our fully decentralized, non-communicative and distributed approach generates collision-free motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Autonomous Robots 32(3), 207–226 (2012)

    Article  Google Scholar 

  2. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: A case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Škrjanc, I., Klančar, G.: Optimal cooperative collision avoidance between multiple robots based on bernstein-bézier curves. Robotics and Autonomous Systems 58(1), 1–9 (2010)

    Article  Google Scholar 

  4. Liu, F., Narayanan, A.: A human-inspired collision avoidance method for multi-robot and mobile autonomous robots. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 181–196. Springer, Heidelberg (2013)

    Google Scholar 

  5. Liu, F., Narayanan, A.: Roundabout collision avoidance for multiple robots based on minimum enclosing rectangle (demonstration). In: Proceedings of the Twelfth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), Saint Paul, Minnesota, USA, pp. 1375–1376. IFAAMAS (May 2013)

    Google Scholar 

  6. Olivier, A.H., Marin, A., Grétual, A., Berthoz, A., Pettré, J.: Collision avoidance between two walkers: Role-dependent strategies. Gait & Posture 38(4), 751–756 (2013)

    Article  Google Scholar 

  7. Olivier, A.H., Marin, A., Grétual, A., Pettré, J.: Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers. Gait & Posture 36(3), 399–404 (2012)

    Article  Google Scholar 

  8. Olivier, A.-H., Marin, A., Grétual, A., Pettré, J.: Minimal predicted distance: A kinematic cue to investigate collision avoidance between walkers. Computer Methods in Biomechanics and Biomedical Engineering 15(1), 240–242 (2012)

    Article  Google Scholar 

  9. Liu, F., Narayanan, A., Bai, Q.: Effective methods for generating collision free paths for multiple robots based on collision type (demonstration). In: Proceedings of the Eleventh International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), Valencia, Spain, pp. 1459–1460. IFAAMAS (June 2012)

    Google Scholar 

  10. Das, S., Goswami, P.P., Nandy, S.C.: Smallest k-point enclosing rectangle and square of arbitrary orientation. Information Processing Letters 94(6), 259–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. Journal of Algorithms 12(1), 38–56 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete & Computational Geometry 11(1), 321–350 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mahapatra, P.R.S., Karmakar, A., Das, S., Goswami, P.P.: k-enclosing axis-parallel square. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 84–93. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle. Information Processing Letters 65(2), 95–99 (1998)

    Article  MathSciNet  Google Scholar 

  15. Pang, S., Liu, F., Kadobayashi, Y., Ban, T., Inoue, D.: Training minimum enclosing balls for cross tasks knowledge transfer. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I. LNCS, vol. 7663, pp. 375–382. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer, Berlin (2002)

    Book  Google Scholar 

  17. De, M., Maheshwari, A., Nandy, S.C., Smid, M.H.M.: An in-place min-max priority search tree. Computational Geometry 46(3), 310–327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers & Mathematics with Applications 29(8), 45–61 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nilsson, N.J.: Principles of Artificial Intelligence. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  20. Hill, J., Archibald, J., Stirling, W., Frost, R.: A multi-agent system architecture for distributed air traffic control. In: Proceedings of AIAA Guidance, San Francisco, California, USA, pp. 1936–1946. American Institute of Aeronautics and Astronautics (AIAA) (August 2005)

    Google Scholar 

  21. Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics 27(4), 696–706 (2011)

    Article  Google Scholar 

  22. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. International Journal of Robotic Research 17(7), 760–772 (1998)

    Article  Google Scholar 

  23. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: Proceedings of The 14th International Symposium of Robotics Research (ISRR 2009), Lucerne, Switzerland, pp. 3–19. Springer (August 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, F., Narayanan, A. (2014). Intelligent Collision Avoidance between Autonomous Agents Using Adaptive Local Views. In: Dam, H.K., Pitt, J., Xu, Y., Governatori, G., Ito, T. (eds) PRIMA 2014: Principles and Practice of Multi-Agent Systems. PRIMA 2014. Lecture Notes in Computer Science(), vol 8861. Springer, Cham. https://doi.org/10.1007/978-3-319-13191-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13191-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13190-0

  • Online ISBN: 978-3-319-13191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics