Advertisement

Q-POINT: QoE-Driven Path Optimization Model for Multimedia Services

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8458)

Abstract

When delivering multimedia services over Internet, different media types are impacted by resource limitations in a different way. While an interactive audio service calls for low-latency communication, video streams should be routed over network paths with sufficient capacity. However, in current networks flows towards the same destination follow the same path, which may lead to a suboptimal resource utilization that effectively penalizes end-users’ quality of experience (QoE). This paper proposes Q-POINT, a QoE-driven path optimization model to fairly maximize aggregated end-user QoE for competing clients’ service flows by calculating the best path for each flow, subject to resource constraints. We formulate the problem as a mixed integer linear program integrating QoE models for audio, video and data transfer. Such an approach can be leveraged within the software-defined networking paradigm, which provides a control plane to orchestrate path set-up. We evaluate our model and illustrate its benefits over shortest path selection.

Keywords

Multimedia services quality of experience software-defined networking network-wide optimization mixed integer linear program 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schatz, R., Hoßfeld, T., Janowski, L., Egger, S.: From Packets to People: Quality of Experience as New Measurement Challenge. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.) Data Traffic Monitoring and Analysis. LNCS, vol. 7754, pp. 219–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Thakolsri, S., Khan, S., Steinbach, E.G., Kellerer, W.: QoE-Driven Cross-Layer Optimization for High Speed Downlink Packet Access. J. Communications, North America. 4, 669–680 (2009)Google Scholar
  3. 3.
    Brajdic, A., Kassler, A., Matijasevic, M.: Quality of Experience based Optimization of Heterogeneous Multimedia Sessions in IMS. In: 2011 BCFIC, pp. 25–32 (2011)Google Scholar
  4. 4.
    Open Networking Foundation: Software-Defined Networking. White paper (2012)Google Scholar
  5. 5.
    Kassler, A., Skorin-Kapov, L., Dobrijevic, O., Matijasevic, M., Dely, P.: Towards QoE-driven Multimedia Service Negotiation and Path Optimization with Software defined Networking. In: 20th SoftCOM, pp. 1–5 (2012)Google Scholar
  6. 6.
    Wang, Z., Crowcroft, J.: Quality-of-service Routing for Supporting Multimedia Applications. IEEE J. Selected Areas in Communications. 14, 1228–1234 (1996)CrossRefGoogle Scholar
  7. 7.
    Lorenz, D.H., Orda, A.: QoS Routing in Networks with Uncertain Parameters. IEEE/ACM Trans. on Networking. 6, 768–778 (1998)CrossRefGoogle Scholar
  8. 8.
    Kumar, D., Kashyap, D., Mishra, K.K., Mishra, A.K.: Routing Path Determination Using QoS Metrics and Priority based Evolutionary Optimization. In: 13th IEEE HPCC, pp. 615–621 (2011)Google Scholar
  9. 9.
    Kuipers, F., Van Mieghem, P., Korkmaz, T., Krunz, M.: An Overview of Constraint-based Path Selection Algorithms for QoS Routing. IEEE Communications Magazine 40, 50–55 (2002)CrossRefGoogle Scholar
  10. 10.
    Lu, T., Zhu, J.: A Genetic Algorithm for Finding a Path Subject to Two Constraints. Applied Soft Computing 13, 891–898 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Amram, N., Fu, B., Kunzmann, G., Melia, T., Munaretto, D., Randriamasy, S., Sayadi, B., Widmer, J., Zorzi, M.: QoE-based Transport Optimization for Video Delivery over Next Generation Cellular Networks. In: 2011 IEEE ISCC, pp. 19–24 (2011)Google Scholar
  12. 12.
    De Vleeschauwer, B., De Turck, F., Dhoedt, B., Demeester, P., Wijnants, M., Lamotte, W.: End-to-end QoE Optimization Through Overlay Network Deployment. In: 2008 ICOIN, pp. 1–5 (2008)Google Scholar
  13. 13.
    Venkataraman, M., Chatterjee, M.: Effects of Internet Path Selection on Video-QoE: Analysis and Improvements. IEEE/ACM Trans. on Networking, 14 p. (2013)Google Scholar
  14. 14.
    Egilmez, H.E., Civanlar, S., Tekalp, A.M.: An Optimization Framework for QoS-enabled Adaptive Video Streaming over OpenFlow Networks. IEEE Trans. on Multimedia. 15, 710–715 (2013)CrossRefGoogle Scholar
  15. 15.
    Egilmez, H.E., Dane, S.T., Bagci, K.T., Tekalp, A.M.: OpenQoS: An OpenFlow Controller Design for Multimedia Delivery with End-to-end Quality of Service over Software-Defined Networks. In: 2012 APSIPA, pp. 1–8 (2012)Google Scholar
  16. 16.
    Jarschel, M., Wamser, F., Hoehn, T., Zinner, T., Tran-Gia, P.: SDN-based Application-Aware Networking on the Example of YouTube Video Streaming. In: 2nd EWSDN, pp. 87–92 (2013)Google Scholar
  17. 17.
    Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol. IETF (2002)Google Scholar
  18. 18.
    Skorin-Kapov, L., Matijasevic, M.: Modeling of a QoS Matching and Optimization Function for Multimedia Services in the NGN. In: 12th IFIP/IEEE MMNS, pp. 55–68 (2009)Google Scholar
  19. 19.
    Moura, N., Vianna, B., Albuquerque, C., Rebello, V., Boeres, C.: MOS-Based Rate Adaption for VoIP Sources. In: 2007 IEEE ICC, pp. 628–633 (2007)Google Scholar
  20. 20.
    Yamagishi, K., Hayashi, T.: Parametric Packet-Layer Model for Monitoring Video Quality of IPTV Services. In: 2008 IEEE ICC, pp. 110–114 (2008)Google Scholar
  21. 21.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New Jersey (1993)Google Scholar
  22. 22.
  23. 23.
    D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise Linear Approximation of Functions of Two Variables in MILP Models. Operat. Research Letters. 38, 39–46 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.Department of Mathematics and Computer ScienceKarlstad UniversityKarlstadSweden

Personalised recommendations