Advertisement

Image Compositing Based on Hierarchical Weighted Blending

  • Huihui Wei
  • Qimin Cheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8879)

Abstract

Recent image compositing methods mainly focus on the compositing for normal images, while for shadow ones, these methods may be less effective due to the special structure in the shadow area. Besides, many of these methods may generate problems of serious color distortion or cannot realize seamless blending. In order to improve these problems, we propose a new hierarchical weighted method based on an alpha matte for image composition, especially for those with shadows. In our method, we divide the blending area into different layers according to the alpha matte, and implement a hybrid method combining gradient based method with transformed alpha blending as well as weights in these layers respectively. By conducting a series of experiments, we demonstrate the superiority of our proposed method.

Keywords

image compositing hierarchical blending weight shadow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Wu, X.: Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search. IEEE Transactions on Image Processing 22(1), 363–376 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gao, Y., Ji, R., Liu, W., Dai, Q., Hua, G.: Weakly Supervised Dictionary Learning with Attributes. IEEE Transactions on Image Processing (2014)Google Scholar
  3. 3.
    Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D Object Retrieval and Recognition with Hypergraph Analysis. IEEE Transactions on Image Processing 21(9), 4290–4303 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yang, Y., Wang, X., Guan, T., Shen, J., Yu, L.: A Multi-dimensional Image Preference Prediction Model for User Generated Images in Social Networks. Information Sciences 281, 601–610 (2014)CrossRefGoogle Scholar
  5. 5.
    Sunkavalli, K., Johnson, M.K., Matusik, W., et al.: Multi-scale image harmonization. ACM Transactions on Graphics (TOG) 29(4), 125 (2010)CrossRefGoogle Scholar
  6. 6.
    Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  7. 7.
    Shahrian, E., Rajan, D., Price, B., et al.: Improving Image Matting Using Comprehensive Sampling Sets. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–643. IEEE (2013)Google Scholar
  8. 8.
    Prez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on Graphics (TOG) 22(3), 313–318 (2003)CrossRefGoogle Scholar
  9. 9.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Sun, J., Tang, C.K., et al.: Lazy snapping. ACM Transactions on Graphics (ToG) 23(3), 303–308 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG) 23(3), 309–314 (2004)CrossRefGoogle Scholar
  12. 12.
    Chuang, Y.Y., Curless, B., Salesin, D.H., et al.: A bayesian approach to digital matting. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-264–II-271. IEEE (2001)Google Scholar
  13. 13.
    Zheng, Y., Kambhamettu, C.: Learning based digital matting. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 889–896. IEEE (2009)Google Scholar
  14. 14.
    Chen, Q., Li, D., Tang, C.K.: KNN matting. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 869–876. IEEE (2012)Google Scholar
  15. 15.
    Levin, A., Rav Acha, A., Lischinski, D.: Spectral matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1699–1712 (2008)CrossRefGoogle Scholar
  16. 16.
    Jia, J., Sun, J., Tang, C.K., et al.: Drag-and-drop pasting. ACM Transactions on Graphics (TOG) 25(3), 631–637 (2006)CrossRefGoogle Scholar
  17. 17.
    Farbman, Z., Hoffer, G., Lipman, Y., et al.: Coordinates for instant image cloning. ACM Transactions on Graphics (TOG) 28(3), 67 (2009)CrossRefGoogle Scholar
  18. 18.
    Ding, Y., Wei, X., Pang, H., et al.: A new framework for the fusion of object and scene based on IHS transform. In: 3rd International Conference on Digital Image Processing, pp. 80091W–80091W-6. International Society for Optics and Photonics (2011)Google Scholar
  19. 19.
    Bie, X.H., Huang, H.D., Wang, W.C.: Free appearance-editing with improved poisson image cloning. Journal of Computer Science and Technology 26(6), 1011–1016 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, D., Jia, W., Li, G., Xiong, Y.: Natural image composition with inhomogeneous boundaries. In: Ho, Y.-S., et al. (eds.) PSIVT 2011, Part II. LNCS, vol. 7088, pp. 92–103. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electronics Letters 38(7), 313–315 (2002)CrossRefGoogle Scholar
  22. 22.
    Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Transactions on Graphics (TOG) 26(3), 4 (2007)CrossRefGoogle Scholar
  23. 23.
    Price, B.L., Morse, B., Cohen, S.: Geodesic graph cut for interactive image segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3161–3168. IEEE (2010)Google Scholar
  24. 24.
    Ding, M., Tong, R.F.: Content-aware copying and pasting in images. The Visual Computer 26(6-8), 721–729 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Huihui Wei
    • 1
  • Qimin Cheng
    • 1
  1. 1.The Department of Electronics and Information Engineering/Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations