Advertisement

Haar-Like and HOG Fusion Based Object Tracking

  • Chong Xia
  • Shui-Fa Sun
  • Peng Chen
  • Heng Luo
  • Fang-Min Dong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8879)

Abstract

Only unitary feature for object is adopted in the conventional tracking system, making it difficult for robust tracking. Regarding the characteristic of both Haar-like and HOG features, a tracking algorithm fusing these two features is proposed: using the Haar-like features for the structure of the object and HOG features for the edge. A mixed feature pool is constructed with these two features. The On-line Boosting feature selection framework is adopted to select out the notable features, and update these features on line to realize the optimal selection. Four representative videos are used to test the performance of the proposed algorithm in the aspect of illumination change, tacking small targets, complex motion of the object, similar object interference during tracking and so on. Statistical analysis Results of the error show that the tracking system using the fused features outperforms the system using either of the two features.

Keywords

Keywords: Object Tracking On-line Boosting Haar-like HOG fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  2. 2.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 260–267 (2006)Google Scholar
  3. 3.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: British Machine Vision Conference, pp. 47–56 (2006)Google Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)Google Scholar
  5. 5.
    Babenko, B., Yang, M.-H., Belongie, S.: Robust Object Tracking with Online Multiple Instance Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1619–1632 (2011)CrossRefGoogle Scholar
  6. 6.
    Sun, S., Guo, Q., et al.: On-line Boosting Based Real-time Tracking With Efficient HOG. In: International Conference on Acoustics, Speech and Signal Processing, pp. 2297–2301 (2013)Google Scholar
  7. 7.
    Ma, Y., Deng, L., et al.: Integrating Orientation Cue With EOH-OLBP-Based Multilevel Features for Human Detection. IEEE Transactions on circuits and systems for video technology 23(10), 1755–1766 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhou, H., Yuan, Y., et al.: Object Tracking using SIFT features and mean shift. Computer Vison and Image Understanding 113(3), 345–352 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1491–1498 (2006)Google Scholar
  10. 10.
    Xu, F., Gao, M.: Human detection and tracking based on HOG and particle filter. In: International Congress on Image and Signal Processing, pp. 1503–1507 (2010)Google Scholar
  11. 11.
    Cai, Y.: Fusing multiple features to detect on-road vehicles. Computing Technology and Automation 32(1), 98–102 (2013)Google Scholar
  12. 12.
    Wang, H., Wang, J., et al.: A new robust object tracking algorithm by fusing multi-features. Journal of Image and Graphics 14(3), 489–498 (2009)Google Scholar
  13. 13.
    Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Hu, S., Sun, S.-f., Lei, B.-j., Dan, Z.-p.: Haar-like feature based on-line boosting tracking algorithm with directional texture entropy. In: Huet, B., Ngo, C.-W., Tang, J., Zhou, Z.-H., Hauptmann, A.G., Yan, S. (eds.) PCM 2013. LNCS, vol. 8294, pp. 538–549. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(7), 1409–1422 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chong Xia
    • 1
  • Shui-Fa Sun
    • 1
  • Peng Chen
    • 1
    • 2
  • Heng Luo
    • 1
  • Fang-Min Dong
    • 1
    • 2
  1. 1.Institute of Intelligent Vision and Image InformationChina Three Gorges UniversityYiChangChina
  2. 2.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric EngineeringChina Three Gorges UniversityYichangChina

Personalised recommendations