Semantically Enhancing Multimedia Lifelog Events

  • Peng Wang
  • Alan Smeaton
  • Alessandra Mileo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8879)


Lifelogging is the digital recording of our everyday behaviour in order to identify human activities and build applications that support daily life. Lifelogs represent a unique form of personal multimedia content in that they are temporal, synchronised, multi-modal and composed of multiple media. Analysing lifelogs with a view to supporting content-based access, presents many challenges. These include the integration of heterogeneous input streams from different sensors, structuring a lifelog into events, representing events, and interpreting and understanding lifelogs. In this paper we demonstrate the potential of semantic web technologies for analysing lifelogs by automatically augmenting descriptions of lifelog events. We report on experiments and demonstrate how our results yield rich descriptions of multi-modal, multimedia lifelog content, opening up even greater possibilities for managing and using lifelogs.


lifelogs events semantic web semantic enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurrin, G., Smeaton, A.F., Doherty, A.R.: Lifelogging: Personal Big Data. Foundations and Trends in Information Retrieval 8(1), 1–125 (2014)CrossRefGoogle Scholar
  2. 2.
    Doherty, A.R., Pauly-Takacs, K., Caprani, N., et al.: Experiences of Aiding Autobiographical Memory Using the SenseCam. HCI 27(1-2), 151–174 (2012)Google Scholar
  3. 3.
    Doherty, A.R., Smeaton, A.F.: Automatically segmenting lifelog data into events. In: WIAMIS 2008, pp. 20–23. IEEE Computer Society, Washington, DC (2008)Google Scholar
  4. 4.
    Beckett, D.: Turtle-Terse RDF triple language. W3C Technical Report (2007)Google Scholar
  5. 5.
    Silva, A.R., Pinho, S., Macedo, L.M., Moulin, C.J.: Benefits of SenseCam Review on Neuropsychological Test Performance. AJPM 44(3), 302–307 (2013)Google Scholar
  6. 6.
    O’Loughlin, G., Cullen, S.J., McGoldrick, A., et al.: Using a wearable camera to increase the accuracy of dietary analysis. AJPM 44(3), 297–301 (2013)Google Scholar
  7. 7.
    Wang, P., Smeaton, A.F.: Using visual lifelogs to automatically characterise everyday activities. Information Sciences 230, 147–161 (2013)CrossRefGoogle Scholar
  8. 8.
    Doherty, A., Smeaton, A.F.: Automatically augmenting lifelog events using pervasively generated content from millions of people. Sensors 10(3), 1423–1446 (2010)CrossRefGoogle Scholar
  9. 9.
    Dobbins, C., Merabti, M., Fergus, P., et al.: Exploiting linked data to create rich human digital memories. Computer Communications (2013)Google Scholar
  10. 10.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal UbiCom 7(5), 275–286 (2003)Google Scholar
  11. 11.
    Rodden, K.: How do people organise their photographs? In: Proceedings of the BCS IRSG Colloquium (1999)Google Scholar
  12. 12.
    Platt, J.C.: AutoAlbum: Clustering digital photographs using probabilistic model merging. In: CBAIVL 2000, pp. 96–100. IEEE Computer Society (2000)Google Scholar
  13. 13.
    Little, S., Jargalsaikhan, I., Clawson, K., et al.: Interactive Surveillance Event Detection at TRECVid2012. In: ICMR 2013, pp. 301–302 (2013)Google Scholar
  14. 14.
    Reuter, T., Papadopoulos, S., Petkos, G., et al.: Social Event Detection at MediaEval 2013: Challenges, Datasets, and Evaluation. In: MediaEval Workshop (2013)Google Scholar
  15. 15.
    Lu, Z., Grauman, K.: Story-Driven Summarization for Egocentric Video. In: CVPR, Portland, OR, USA, pp. 2714–2721 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peng Wang
    • 1
  • Alan Smeaton
    • 2
  • Alessandra Mileo
    • 3
  1. 1.Beijing Institute of System EngineeringBeijingP.R. China
  2. 2.Insight Centre for Data AnalyticsDublin City UniversityDublin 9Ireland
  3. 3.Insight Centre for Data AnalyticsNational University of IrelandGalwayIreland

Personalised recommendations