Skip to main content

Fuzzy Image Authentication with Error Localization and Correction

  • Chapter
  • First Online:
Robust Image Authentication in the Presence of Noise

Abstract

Traditionally, multimedia data such as audio, images, and videos have been protected using message authentication code (MAC) for authenticity and integrity verification. Standard MAC algorithms are very good at strict protection against manipulations. However, the sensitivity of a standard MAC is extremely high to manipulations, making it unsuitable for application in multimedia, where minor modifications are sometimes acceptable. Multimedia data, such as images, are usually pre-processed with standard image processing operations, compression, quantization, etc. which modifies the original image data. This processing yields the integrity verification and authentication on images to fail if the standard MAC based algorithms are used. Retransmissions may help in reducing the problem to a certain extent; however, retransmissions might not be possible over a unidirectional channel or in real-time transmissions where receiving an authentic part of an image (or other signals in general such as audio or video) might be better than having no image at all. There are specialized algorithms for image authentication which are tolerant to a certain degree of modifications in the data, introduced by channel noise or image processing operations. Such algorithms are called fuzzy authentication algorithms (Ur-Rehman O, Applications of Iterative Soft Decision Decoding, 2013) or fuzzy image authentication algorithms when applied to images. The decision of these authentication algorithms is not a strict binary decision as that of a standard MAC. Such algorithms are tolerant to modifications and this tolerance level can be adjusted by adjusting the parameters of the algorithm to vary their lenience to modifications. Fuzzy image authentication algorithms should be designed in a manner that they can differentiate legitimate manipulations from illegitimate manipulations. Many such algorithms have been proposed in literature for image authentication. These algorithms are normally based on image content rather than the data itself. Even if certain operations such as compression, quantization, etc. are applied, the content of the image remains unchanged. In this chapter, algorithms for fuzzy image authentication, with error localization and correction capabilities are discussed. Once the modifications in the image are localized to a specific region within the image, they can be corrected using the error correcting codes embedded in the authentication algorithms. These fuzzy image authentication algorithms will help in partial image acceptance despite minor errors left uncorrected by the error correcting codes. Simulation results given in this chapter show how such algorithms react to bit (and/or block) errors and how the error correction and fuzzy authentication has little or no visual impact on the resultant image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed IS, Solomon G. Polynomial codes over certain finite fields. SIAM J Appl Math. 1960;8:300–4.

    Article  MATH  MathSciNet  Google Scholar 

  2. Berrou C, Glavieux A, Thitimajshima P. Near shannon limit error-correcting coding and decoding: turbo-codes. Proceedings of the IEEE International Conference on Communications (ICC’93); Geneva, Switzerland; May 1993. pp. 1064–70.

    Google Scholar 

  3. Gallager RG. Low density parity check codes. Monograph, Cambridge: M.I.T. Press; 1963.

    Google Scholar 

  4. Peterson LL, Davie BS. Computer networks: a systems approach. 5th edn. Burlington: Morgan Kaufman; 2011.

    Google Scholar 

  5. Peterson WW, Brown DT. Cyclic codes for error detection. Proc IRE. 1961;49(1):228–35; (January 1961). doi:10.1109/JRPROC.1961.287814.

    Article  MathSciNet  Google Scholar 

  6. ISO/IEC 9797-1. Information technology—security techniques—Message Authentication Codes (MACs)—Part 1: mechanisms using a block cipher; 2011.

    Google Scholar 

  7. ISO/IEC 9797-2. Information technology—security techniques—Message Authentication Codes (MACs)—Part 2: mechanisms using a dedicated hash-function; 2011.

    Google Scholar 

  8. Bellare M, Canetti R, Krawczyk H. Keying hash functions for message authentication. Advance in Cryptology-CRYPTO’96, Lecture Notes in Computer Science, vol. 1109, N. Koblitz ed., Springer-Verlag, 1996. pp. 1–15.

    Google Scholar 

  9. Ur-Rehman O. Applications of iterative soft decision decoding. Aachen: Shaker Verlag; 2013. ISBN:978-3-8440-1641-3.

    Google Scholar 

  10. Graveman R, Fu K. Approximate message authentication codes. Proceedings of 3rd Annual Fed lab Symposium on Advanced Telecommunications/Information Distribution, vol. 1, College Park, MD, Feb. 1999.

    Google Scholar 

  11. Gravemen R, Xie L, Arce GR. Approximate image message authentication codes. Proceedings of 4th Annual Symposium on Advanced Telecommunications and Information Distribution Research Program, College Park, MD; 2000.

    Google Scholar 

  12. Boncelet C. The NTMAC for authentication of noisy messages. IEEE Trans Inf Forensics Secur. 2006;1(1):35–42.

    Article  Google Scholar 

  13. Onien D, Safavi-Naini R, Nickolas P, Desmedt Y. Unconditionally secure approximate message authentication. Proceedings of the Second International Workshop on Coding and Cryptology, Springer, 2009.

    Google Scholar 

  14. Ge R, Arce GR, Crescenzo GD. Approximate message authentication codes for N-ary alphabets. IEEE Trans Inf Forensics Secur. 2006;1(1):56–67.

    Article  Google Scholar 

  15. Ur-Rehman O, Zivic N, Amir Hossein S, Tabatabaei AE, Ruland C. Error correcting and weighted noise tolerant message authentication codes. 5th International Conference on Signal Processing and Communication Systems (ICSPCS)/IEEE Conference, Hawaii, USA, December; 2011.

    Google Scholar 

  16. Zivic N, Flanagan M. On joint cryptographic verification and channel decoding via the maximum likelihood criterion. IEEE Commun Lett. 2012;6(5):717–9.

    Article  Google Scholar 

  17. Zivic N. Joint channel coding and cryptography. Aachen: Shaker Verlag; 2008. ISBN:978-3-8322-7180-0.

    Google Scholar 

  18. Ur-Rehman O, Tabatabaei AE, Amir Hossein S, Zivic N, Ruland C. Soft authentication and correction of images. Systems, Communication and Coding (SCC), Proceedings of 2013 9th International ITG Conference on, 2013; pp. 1–6.

    Google Scholar 

  19. Ur-Rehman O, Zivic N. Noise tolerant image authentication with error localization and correction. Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, 2012; pp. 2081–7.

    Google Scholar 

  20. Chen WH, Pratt WK. Scene adaptive coder. IEEE Trans Commun. 1984;COM-32:225–32.

    Article  Google Scholar 

  21. Watson A. Image compression using discrete cosine transform. Math J. 1994;1(4):81–8.

    Google Scholar 

  22. Ahmed N, Natarajan T, Rao KR. Discrete cosine transform. IEEE Trans Comput. 1974;C-23:90–3.

    Article  MathSciNet  Google Scholar 

  23. Yip P, Rao KR. Fast decimation-in-time algorithms for a family of discrete sine and cosine transforms. Circuits Syst Signal Process. 1984;3:387–408.

    Article  MATH  Google Scholar 

  24. Chung SY, Forney GD Jr, Richardson TJ, Urbanke R. On the design of low-density parity-check codes within 0.0045 dB of the shannon limit. IEEE Commun Lett. 2001;5(2):58–60.

    Article  Google Scholar 

  25. Berlekamp ER. Algebraic coding theory. New York: McGraw-Hill; 1968. (Revised edition, Laguna Hills: Aegean Park Press, 1984).

    MATH  Google Scholar 

  26. Sugiyama Y, Kasahara Y, Hirasawa S, Namekawa T. A method for solving key equation for goppa codes. Inf Control. 1975;27:87–99.

    Article  MATH  MathSciNet  Google Scholar 

  27. Guruswami V, Sudan M. Improved decoding of reed-solomon and algebraic-geometry codes. IEEE Trans Inf Theory. 1999;45(6):1757–67.

    Article  MATH  MathSciNet  Google Scholar 

  28. Koetter R, Vardy A. Algebraic soft-decision decoding of reed-solomon codes. Proceedings of the 2000 IEEE International Symposium on Information Theory, p. 61, Sorrento, Italy, Jun. 25–30, 2000.

    Google Scholar 

  29. Elias P. List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT; 1957.

    Google Scholar 

  30. Cox I, Miller M, Bloom J, Fridrich J, Kalker T. Digital watermarking and steganography. Berlington: Morgan Kaufmann; 2007.

    Google Scholar 

  31. Lee J, Won CS. A watermarking sequence using parities of error control coding for image authentication and correction. IEEE Trans Consumer Electron. 2000;46(2):313–7.

    Article  Google Scholar 

  32. Wu Y. Tamper-localization watermarking with systematic error correcting code. Proceedings of IEEE International Conference on Image Processing (ICIP). 2006; pp. 1965–8, Atlanta, GA.

    Google Scholar 

  33. Fridrich J, Goljan M. Images with self-correcting capabilities. Proceedings of the IEEE International Conference on Image Processing (ICIP). 1999; pp. 792–6, Kobe.

    Google Scholar 

  34. Umbaugh SE. Digital image processing and analysis: human and computer vision applications with CVIPtools. 2nd edn, CRC Press, Nov. 2010. ISBN:978-1-4398-0205-2.

    Google Scholar 

  35. International Organization for Standardization. ISO/IEC JTC 1/SC 29 (2009-05-07). ISO/IEC JTC 1/SC 29/WG 1—coding of still pictures (SC 29/WG 1 Structure); 2009.

    Google Scholar 

  36. International Organization for Standardization. ISO/IEC 15444-1:2004—information technology—JPEG 2000 image coding system: core coding system; 2004.

    Google Scholar 

  37. Preneel B, van Oorschot PC. MDx-MAC and building fast MACs, from hash functions. Proceeding of CRYPTO 1995, LNCS 963, Springer Verlag. 1995; pp. 1–14.

    Google Scholar 

  38. Zivic N. Coding and cryptography: synergy for robust communication. Munich: Oldenbourg Verlag; 2013. ISBN:978-3-486-75212-0.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obaid Ur-Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ur-Rehman, O., Živić, N. (2015). Fuzzy Image Authentication with Error Localization and Correction. In: Živić, N. (eds) Robust Image Authentication in the Presence of Noise. Springer, Cham. https://doi.org/10.1007/978-3-319-13156-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13156-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13155-9

  • Online ISBN: 978-3-319-13156-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics