Advertisement

Intelligent Tracking Control System for Fast Image Scanning of Atomic Force Microscopes

  • Sajal K. Das
  • Hemanshu R. Pota
  • Ian R. Petersen
Part of the Studies in Computational Intelligence book series (SCI, volume 581)

Abstract

Atomic force microscope (AFM) is a type of scanning probe microscopy technique which is used to measure the characteristics of various specimens at an atomic level through surface imaging. In the imaging process of the AFM the sample is placed on a positioning unit termed as nanopositioner. The performance of the AFM for fast image scanning is limited to the one percent of the first resonance frequency of its positioning unit. Many imaging applications require a faster response and high quality imaging than what can be achieved using the currently available commercial AFMs. The need for high speed imaging is the reduction of the computational time to capture an image. The time require to capture an image of a reference grating sample for an 8 μm × 8 μm area and 256 number of scan lines at the scanning rate of 1 Hz and 125 Hz are 170s and 2 s. This shows the importance of the increase of scan frequency in terms of operation time. The tracking performance of the nanopositioner of the AFM for high speed imaging is limited due to the vibration of the nanopositioner, cross coupling effect between the axes of the nanopositioner and nonlinear effects in the form of hysteresis and creep. In this chapter we have proposed an intelligent multi-variable tracking controller to compensate the effect of vibration, cross coupling and nonlinearities in the form of hysteresis and creep in AFM for fast image scanning. Experimental results in time and frequency domain are presented to show the effectiveness of the proposed controller.

Keywords

Piezoelectric tube scanner Atomic force microscope Negative-imaginary systems Passive systems Resonant controller Vibration control 

References

  1. 1.
    Adriaens, H., De Koning, W., Banning, R.: Modeling piezoelectric actuators. IEEE/ASME Trans. Mechatron 5(4), 331–341 (2000)CrossRefGoogle Scholar
  2. 2.
    Al Janaideh, M., Rakheja, S., Su, C.Y.: An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 16(4), 734–744 (2011)CrossRefGoogle Scholar
  3. 3.
    Amelio, S., Goldade, A.V., Rabe, U., Scherer, V., Bhushan, B.: Measurments of mechanical propoerties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy. Thin Solid Films 392, 75–84 (2001)CrossRefGoogle Scholar
  4. 4.
    Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H.: High-speed Atomic Force Microscopy for Nano-visualization of Biomolecular Processes. Wiley-VCH Verlag GmbH & Co. KGaA. pp. 277–296 (2009)Google Scholar
  5. 5.
    Ang WT, Garmon F, Khosla P, Riviere C.: Modeling rate-dependent hysteresis in piezoelectric actuators. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 2, pp. 1975–1980 (2003)Google Scholar
  6. 6.
    Balas, M.J.: Direct velocity feedback control of large space structures. J. Guidance Control 2(3), 252–253 (1979)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barbara, P.F., Adams, D.M., O’Connor, D.B.: Characterization of organic thin film materials with near-field scanning optical microscopy. Annu. Rev. Mater. Sci. 29, 433–469 (1999)CrossRefGoogle Scholar
  8. 8.
    Betzig, E., Finn, P.L., Weiner, J.S.: Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 60(20), 2484–2486 (1992)CrossRefGoogle Scholar
  9. 9.
    Bhikkaji B, Yong YK, Mahmood IA, Moheimani SR.: Multivariable Control Designs for Piezoelectric Tubes. In: Proceedings of the 18th IFAC World Congress. August 28–September 2, vol. 18. Milano, Italy (2011)Google Scholar
  10. 10.
    Bhikkaji, B., Moheimani, S.O.: Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning. IEEE/ASME Trans. Mech. 13(5), 530–537 (2008)CrossRefGoogle Scholar
  11. 11.
    Bhikkaji, B., Ratnam, M., Fleming, A.J., Moheimani, S.O.R.: High-Performance Control of Piezoelectric Tube Scanners. IEEE Trans. Control Sys. Tech. 15(5), 853–866 (2007)CrossRefGoogle Scholar
  12. 12.
    Binnig, G., Rohrer, H.: American Physical Society; Scanning tunneling microscopy from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987)CrossRefGoogle Scholar
  13. 13.
    Binnig, G., Smith, D.P.E.: Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum. 57(8), 1688–1689 (1986)CrossRefGoogle Scholar
  14. 14.
    Binnig, G., Quate, C.F., Gerber, C.: American Physical Society; Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  15. 15.
    Binnig, G., Quate, C.F., Gerber, C.: American Physical Society; Atomic Force Microscope 2D and 3D. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  16. 16.
    Croft D, Shedd G, Devasia S.: Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. In: Proceedings of American Control Conference, pp. 2123–2128 (2000)Google Scholar
  17. 17.
    Das SK, Pota HR, Petersen IR. Damping controller design for nanopositioners: a mixed passivity, negative-imaginary and small-gain approach. IEEE/ASME Trans. Mechatronics (2014, In Press)Google Scholar
  18. 18.
    Das SK, Pota HR, Petersen IR.: Multi-variable Double Resonant Controller for Fast Image Scanning of Atomic Force Microscope, Asian Control Conference, Washington, 23–26 June 2013, pp. 1–6. Istanbul (2013b)Google Scholar
  19. 19.
    Das SK, Pota HR, Petersen IR.: Multi-variable Resonant Controller for Fast Atomic Force Microscopy. In: Proceedings of Australian Control Conference. pp. 448–453. Sydney, Australia (2012b)Google Scholar
  20. 20.
    Das SK, Pota HR, Petersen IR.: Resonant control of atomic force microscope scanner: A “mixed” negative-imaginary and small-gain approach. In: American Control Conference, Washington, June 17–19, 2013, pp. 5476–5481. Washington DC, USA (2013a)Google Scholar
  21. 21.
    Das SK, Pota HR, Petersen IR.: Resonant controller design for a piezoelectric tube scanner: a mixed negative-imaginary and small-gain approach. IEEE Trans. Control Syst. Technol. (2013c, In Press)Google Scholar
  22. 22.
    Das SK, Pota HR, Petersen IR.: Resonant Controller for Fast Atomic Force Microscopy. In: Proceedings of Conference on Decision and Control. pp. 2471–2476. Maui, Hawaii (2012a)Google Scholar
  23. 23.
    Devasia, S., Eleftheriou, E., Moheimani, S.: A Survey of Control Issues in Nanopositioning. IEEE Trans. Control Sys. Tech. 15(5), 802–823 (2007)CrossRefGoogle Scholar
  24. 24.
    DeVecchio, D., Bhushan, B.: Use of a nanoscale Kelvin probe for detecting wear precursors. Rev. Sci. Instrum. 69(10), 3618–3624 (1998)CrossRefGoogle Scholar
  25. 25.
    El Rifai OM, Youcef-Toumi K.: Coupling in piezoelectric tube scanners used in scanning probe microscopes. In: Proceedings of American Control Conference the 2001, vol. 4, pp. 3251–3255 (2001)Google Scholar
  26. 26.
    Fleming, A.J.: Nanopositioning system with force feedback for high-performance tracking and vibration control. IEEE/ASME Trans. Mechatron. 15(3), 433–447 (2010)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Fleming AJ, Leang KK.: Evaluation of charge drives for scanning probe microscope positioning stages. In: Proceedings of American Control Conference, pp. 2028–2033 (2008)Google Scholar
  28. 28.
    Fleming, A.J., Moheimani, S.O.R.: Precision current and charge amplifiers for driving highly capacitive piezoelectric loads. Electron. Lett. 39(3), 282–284 (2003)CrossRefGoogle Scholar
  29. 29.
    Fleming, A.J., Aphale, S.S., Moheimani, S.O.R.: A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages. IEEE Trans. Nanotechnology 9(4), 438–448 (2010)CrossRefGoogle Scholar
  30. 30.
    Hansma, P., Drake, B., Marti, O., Gould, S., Prater, C.: The scanning ion-conductance microscope. Science 243(4891), 641–643 (1989)CrossRefGoogle Scholar
  31. 31.
    Hartmann, U.: Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999)CrossRefGoogle Scholar
  32. 32.
    Hung, S.K.: Spiral Scanning Method for Atomic Force Microscopy. J. Nanosci. Nanotechnol. 10, 4511–4516 (2010)CrossRefGoogle Scholar
  33. 33.
    Husser, O.E., Craston, D.H., Bard, A.J.: Scanning eletromechanical microscopy-high resolution deposition and etching materials. J. Electrochem. Soc. 136, 3222–3229 (1989)CrossRefGoogle Scholar
  34. 34.
    Ikhouane, F., Manosa, V., Rodellar, J.: Dynamic properties of the hysteretic Bouc-Wen model. Syst. Control Lett. 56(3), 197–205 (2007)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Kuhnen, K., Krejci, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems—a new Preisach modeling approach. IEEE Trans. Autom. Control 54(3), 537–550 (2009)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Leang, K.K., Devasia, S.: Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators. IEEE Trans. Control Syst. Technol. 15(5), 927–935 (2007)CrossRefGoogle Scholar
  37. 37.
    Lee, D.T., Pelz, J.P., Bhushan, B.: Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance. Rev. Sci. Instrum. 73, 3523–3533 (2002)Google Scholar
  38. 38.
    Green M, Limebeer DJN.: Linear Robust Control. Prentice-Hall, NJ (1995)Google Scholar
  39. 39.
    Mahmood, I.A., Moheimani, S.O.R.: Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev. of Sci. Instrum. 80(6), 063705(1)–063705(8) (2009)CrossRefGoogle Scholar
  40. 40.
    Majumdar, A.: Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)CrossRefGoogle Scholar
  41. 41.
    Matey, J., Blanc, J.: Scanning capacitance microscopy. Annu. Rev. Mater. Sci. 57, 1437–1444 (1999)Google Scholar
  42. 42.
    McKelvey, T., Akay, H., Ljung, L.: Subspace-based identification of infinite-dimensional multivariable systems from frequency-response data. Automatica 32(6), 885–902 (1996)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Melitz, W., Shen, J., Kummel, A.C., Lee, S.: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66(1), 1–27 (2011)CrossRefGoogle Scholar
  44. 44.
    Patra, S., Lanzon, A.: Stability Analysis of Interconnected Systems With “Mixed” Negative-Imaginary and Small-Gain Properties. IEEE Trans. Autom. Control 56(6), 1395–1400 (2011)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Petersen IR.: Negative imaginary systems theory in the robust control of highly resonant flexible structures. In: Australian Control Conference. Melbourne, Australia. pp. 1–6 (2011)Google Scholar
  46. 46.
    Petersen, I., Lanzon, A.: Feedback Control of Negative-Imaginary Systems. IEEE Control Sys. Mag. 30(5), 54–72 (2010)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Pota H, Moheimani SR, Smith M.: Resonant controllers for flexible structures. In: Proceedings Conference of Decision and Control, vol. 1. pp. 631–636 (1999)Google Scholar
  48. 48.
    Pota, H., Reza Moheimani, S., Smith, M.: Resonant controller for smart structures. Smart Mater. Struct. 11, 1–8 (2002)CrossRefGoogle Scholar
  49. 49.
    Prater, C., Hansma, P., Tortonese, M., Quate, C.: Improved scanning ion-conductance microscope using microfabricated probes. Rev. Sci. Instrum. 62(11), 2634–2638 (1991)CrossRefGoogle Scholar
  50. 50.
    Ratnam M, Bhikkaji B, Fleming A, Moheimani S. PPF Control of a Piezoelectric Tube Scanner. In: 44th IEEE Conference on Decision and Control and European Control Conference, pp. 1168–1173 (2005)Google Scholar
  51. 51.
    Rost, M.J., vanBaarle, G.J.C., Katan, A.J., vanSpengen, W.M., Schakel, P., vanLoo, W.A., Oosterkamp, T.H., Frenken, J.W.M.: John Wiley and Sons Asia Pte Ltd; Video-rate scanning probe control challenges: setting the stage for a microscopy revolution. Asian J. Control 11(2), 110–129 (2009)CrossRefGoogle Scholar
  52. 52.
    Salapaka, S., Sebastian, A., Cleveland, J.P., Salapaka, M.V.: High bandwidth nano-positioner: A robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)CrossRefGoogle Scholar
  53. 53.
    Scherer, V., Arnold, W., Bhushan, B.: John Wiley & Sons, Ltd.; Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999)CrossRefGoogle Scholar
  54. 54.
    Schitter G, Astrom KJ, DeMartini B, Fantner GE, Turner K, Thurner PJ, Hansma PK. Design and modeling of a high-speed scanner for atomic force microscopy. In: Proceedings of American Control Conference (2006)Google Scholar
  55. 55.
    Schitter G, Rost MJ. Scanning probe microscopy at video-rate. Mater. Today 11(0), 40–48 (2008)Google Scholar
  56. 56.
    Schitter G, Stemmer A, Allgower F. Robust 2 DOF-control of a piezoelectric tube scanner for high speed atomic force microscopy. In: Proceedings of American Control Conference the 2003, vol. 5, pp. 3720–3725 (2003)Google Scholar
  57. 57.
    Schitter, G., Menold, P., Knapp, H.F., Allgöwer, F., Stemmer, A.: High performance feedback for fast scanning atomic force microscopes. Rev. Sci. Instrum. 8, 72 (2001)Google Scholar
  58. 58.
    Schoenenberger, C., Alvarado, S.: Springer, Understanding magnetic force microscopy. Z. Phys. 80(3), 373–383 (1990)CrossRefGoogle Scholar
  59. 59.
    Sebastian A, Salapaka MV, Cleveland JP.: Robust control approach to atomic force microscopy. In: Proceedings of 42nd IEEE Conference on Decision and Control, vol. 4, pp. 3443–3444 (2003)Google Scholar
  60. 60.
    Sebastian, A., Salapaka, S.M.: Design methodologies for robust nano-positioning. IEEE Trans. on Control Sys. Tech. 13(6), 868–876 (2005)CrossRefGoogle Scholar
  61. 61.
    Stern, J.E., Terris, B., Mamin, H., Rugar, D.: Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53(26), 2717–2719 (1988)CrossRefGoogle Scholar
  62. 62.
    Tuma, T., Lygeros, J., Kartik, V., Sebastian, A., Pantazi, A.: High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23(18), 185501 (2012)CrossRefGoogle Scholar
  63. 63.
    Williams, C., Wickramasinghe, H.: Scanning thermal profiler. Appl. Phys. Lett. 49(23), 1587–1589 (1986)CrossRefGoogle Scholar
  64. 64.
    Williams, C.C., Wickramasinghe, H.K.: Microscopy of chemical-potential variations on an atomic scale. Nature 344, 317–319 (1990)CrossRefGoogle Scholar
  65. 65.
    Yong YK, Moheimani SOR, Petersen IR. 2010. High-speed cycloid-scan atomic force microscopy. Nanotechnology 21(36)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sajal K. Das
    • 1
  • Hemanshu R. Pota
    • 1
  • Ian R. Petersen
    • 1
  1. 1.School of Engineering and Information Technology (SEIT)The University of New South WalesCanberraAustralia

Personalised recommendations