Skip to main content

PTAS for Minimax Approval Voting

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8877)

Abstract

We consider Approval Voting systems where each voter decides on a subset of candidates he/she approves. We focus on the optimization problem of finding the committee of fixed size k, minimizing the maximal Hamming distance from a vote. In this paper we give a PTAS for this problem and hence resolve the open question raised by Carragianis et al. [AAAI’10]. The result is obtained by adapting the techniques developed by Li et al. [JACM’02] originally used for the less constrained Closest String problem. The technique relies on extracting information and structural properties of constant size subsets of votes.

Keywords

  • Approval Vote
  • Election Rule
  • Star Position
  • Stable Subset
  • Minimax Procedure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-13129-0_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-13129-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., Walsh, T.: Computational Aspects of Multi-Winner Approval Voting. arXiv preprint arXiv:1407.3247v1 (2014)

    Google Scholar 

  2. Brams, S.J., Fishburn, P.C.: Approval Voting, 2nd edn. Springer (2007)

    Google Scholar 

  3. Brams, S.J., Kilgour, D.M., Sanver, M.R.: A minimax procedure for electing committees. Public Choice 132(3-4), 401–420 (2007)

    CrossRef  Google Scholar 

  4. Byrka, J., Sornat, K.: PTAS for Minimax Approval Voting. arXiv preprint arXiv:1407.7216v2 (2014)

    Google Scholar 

  5. Caragiannis, I., Kalaitzis, D., Markakis, E.: Approximation algorithms and mechanism design for minimax approval voting. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 737–742 (2010)

    Google Scholar 

  6. LeGrand, R.: Analysis of the minimax procedure. Technical Report WUCSE-2004-67. Department of Computer Science and Engineering, Washington University, St. Louis, Missouri (2004)

    Google Scholar 

  7. LeGrand, R., Markakis, E., Mehta, A.: Some results on approximating the minimax solution in approval voting. In: Proceedings of 6th AAMAS, pp. 1193–1195 (2007)

    Google Scholar 

  8. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM 49, 157–171 (2002)

    CrossRef  MathSciNet  Google Scholar 

  9. Motvani, R., Raghavan, P.: Randomized Algorithms, ch. 4.1. Cambridge University Press (1995)

    Google Scholar 

  10. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximate packing integer programs. Journal of Computer and System Sciences 37(2), 130–143 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Schrijver, A.: Combinatorial Optimization: Polyhedra and efficiency, p. 766. Springer (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Byrka, J., Sornat, K. (2014). PTAS for Minimax Approval Voting. In: Liu, TY., Qi, Q., Ye, Y. (eds) Web and Internet Economics. WINE 2014. Lecture Notes in Computer Science, vol 8877. Springer, Cham. https://doi.org/10.1007/978-3-319-13129-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13129-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13128-3

  • Online ISBN: 978-3-319-13129-0

  • eBook Packages: Computer ScienceComputer Science (R0)