PTAS for Minimax Approval Voting

  • Jarosław Byrka
  • Krzysztof Sornat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8877)

Abstract

We consider Approval Voting systems where each voter decides on a subset of candidates he/she approves. We focus on the optimization problem of finding the committee of fixed size k, minimizing the maximal Hamming distance from a vote. In this paper we give a PTAS for this problem and hence resolve the open question raised by Carragianis et al. [AAAI’10]. The result is obtained by adapting the techniques developed by Li et al. [JACM’02] originally used for the less constrained Closest String problem. The technique relies on extracting information and structural properties of constant size subsets of votes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., Walsh, T.: Computational Aspects of Multi-Winner Approval Voting. arXiv preprint arXiv:1407.3247v1 (2014)Google Scholar
  2. 2.
    Brams, S.J., Fishburn, P.C.: Approval Voting, 2nd edn. Springer (2007)Google Scholar
  3. 3.
    Brams, S.J., Kilgour, D.M., Sanver, M.R.: A minimax procedure for electing committees. Public Choice 132(3-4), 401–420 (2007)CrossRefGoogle Scholar
  4. 4.
    Byrka, J., Sornat, K.: PTAS for Minimax Approval Voting. arXiv preprint arXiv:1407.7216v2 (2014)Google Scholar
  5. 5.
    Caragiannis, I., Kalaitzis, D., Markakis, E.: Approximation algorithms and mechanism design for minimax approval voting. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 737–742 (2010)Google Scholar
  6. 6.
    LeGrand, R.: Analysis of the minimax procedure. Technical Report WUCSE-2004-67. Department of Computer Science and Engineering, Washington University, St. Louis, Missouri (2004)Google Scholar
  7. 7.
    LeGrand, R., Markakis, E., Mehta, A.: Some results on approximating the minimax solution in approval voting. In: Proceedings of 6th AAMAS, pp. 1193–1195 (2007)Google Scholar
  8. 8.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM 49, 157–171 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Motvani, R., Raghavan, P.: Randomized Algorithms, ch. 4.1. Cambridge University Press (1995)Google Scholar
  10. 10.
    Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximate packing integer programs. Journal of Computer and System Sciences 37(2), 130–143 (1988)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and efficiency, p. 766. Springer (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jarosław Byrka
    • 1
  • Krzysztof Sornat
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations