Skip to main content

Stem Cells Derived Insulin-Secreting Cells for Insulin-Dependent Diabetes Mellitus: Exploiting Laboratory Discoveries

  • Chapter
  • First Online:
Obesity and Diabetes
  • 1705 Accesses

Abstract

The incidence of childhood diabetes—insulin-dependent diabetes (IDDM) continues to rise steadily, and the ever-increasing push toward more intensive management is limited by rising costs and the unremitting demand this form of therapy places on its recipients. Long-term management requires a multidisciplinary approach that includes physicians, nurses, dietitians, and selected specialists. Lack of care can be lethal and administration of insulin is essential for survival for IDDM patients. Since the identification of the autoimmune etiology of IDDM immunosuppressive agents has been proposed as a preventive treatment against the development of the disease, its nephrotoxicity and other adverse effects make it highly inappropriate for long-term use. While pancreas transplantation and islet cell transplantations also have their own limitations. Cell-based therapies mainly including insulin-secreting cells (ISC) represent a promising approach for treatment of IDDM. ISC can provide an abundant and reproducible source of beta-like cells material for transplantation. A number of highly differentiated ISC have been generated from stem cells which can produce remarkable amount of insulin and release it in response to physiological insulin secretagogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD-MSC:

Adipose tissue-derived MSC

ADSC:

Adipose-derived stromal cells

BM:

Bone marrow

EMT:

Epithelial–mesenchymal transition

ESC:

Embryonic stem cell

GAD:

Glutamic acid decarboxylase

GFP:

Green fluorescent protein

h-ASC:

Human adipose-derived stem cells

HbA1c:

Glycosylated hemoglobin

HGF:

Hepatocyte growth factor

HSC:

Hematopoietic stem cells

ICA:

Islet-like cell aggregates

IDDM:

Insulin-dependent diabetes mellitus

IPADSC:

Insulin-producing ADSC

ISC:

Insulin-secreting cells

MSC:

Mesenchymal stem cells

NOD:

Non-obese diabetic

PU-PVP-IPN:

Polyurethane-poly vinyl pyrrolidone-interpenetrating network

SCF:

Stem cell factor

SCID:

Severe combined immunodeficiency

Tregs:

Regulatory T-cells

UCB:

Umbilical cord blood

References

  • Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells. A potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abu-Abeeleh M, Matalka I, Bani Ismail ZA, Alzaben KR, Abu-Halaweh SA, Aloweidi AS (2010) Efficacy of human adipose tissue-derived stem cells in cardiac muscle repair in an experimental acute myocardial infarction model using nude rats (Crl:NIH-Fox1RNU). Comp Clin Pathol 19:1–4

    Google Scholar 

  • Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50(8):1691–1697

    CAS  PubMed  Google Scholar 

  • Atouf F, Park CH, Pechhold K, Ta M, Choi Y, Lumelsky NL (2007) No evidence for mouse pancreatic beta cell epithelial–mesenchymal transition in vitro. Diabetes 56:699–702

    CAS  PubMed  Google Scholar 

  • Bach JF (2001) Immunotherapy of insulin-dependent diabetes mellitus. Curr Opin Immunol 13:601–605

    CAS  PubMed  Google Scholar 

  • Beattie GM, Otonkoski T, Lopez AD, Hayek A (1997) Functional beta-cell mass after transplantation of human fetal pancreatic cells: differentiation or proliferation? Diabetes 46:244–248

    CAS  PubMed  Google Scholar 

  • Beattie GM, Montgomery AM, Lopez AD, Hao E, Perez B, Just ML et al (2002) A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes 51(12):3435–3439

    CAS  PubMed  Google Scholar 

  • Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    CAS  PubMed  Google Scholar 

  • Bittira B, Shum-Tim D, Al-Khaldi A, Chiu RC (2003) Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur J Cardiothorac Surg 24:393–398

    PubMed  Google Scholar 

  • Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS et al (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99(4):2344–2349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300

    CAS  PubMed  Google Scholar 

  • Bosco D, Meda P (1997) Reconstructing islet function in vitro. Adv Exp Med Biol 426:285–298

    CAS  PubMed  Google Scholar 

  • Bosi E, Braghi S, Maffi P, Scirpoli M, Bertuzzi F, Pozza G et al (2001) Autoantibody response to islet transplantation in type 1 diabetes. Diabetes 50:2464–2471

    CAS  PubMed  Google Scholar 

  • Burns CJ, Persaud SJ, Jones PM (2004) Stem cell therapy for diabetes: do we need to make beta cells? J Endocrinol 183:437–443

    CAS  PubMed  Google Scholar 

  • Calafiore R, Montanucci P, Basta G (2014) Stem cells for pancreatic β-cell replacement in diabetes mellitus: actual perspectives. Curr Opin Organ Transplant 19(2):162–168

    CAS  PubMed  Google Scholar 

  • Carson CT, Aigner S, Gage FH (2006) Stem cells: the good, bad and barely in control. Nat Med 12:1237–1238

    CAS  PubMed  Google Scholar 

  • Chai CK, Chao FK, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 3:e1451

    Google Scholar 

  • Chandra V, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR (2011) Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS ONE 6(6):e20615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chase LG, Ulloa-Montoya F, Kidder BL, Verfaillie CM (2007) Islet-derived fibroblast-like cells are not derived via epithelial–mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 56:3–7

    CAS  PubMed  Google Scholar 

  • Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta cells. World J Gastroenterol 10:3016–3020

    CAS  PubMed  Google Scholar 

  • Cheng L, Qasba P, Vanguri P, Thiede MA (2000) Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34+ hematopoietic progenitor cells. J Cell Physiol 184:58–69

    CAS  PubMed  Google Scholar 

  • Cheng L, Hammond H, Ye Z, Zhan X, Dravid G (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21:131–142

    CAS  PubMed  Google Scholar 

  • Chou YH, Khoun S, Hermann H, Goldman RD (2003) Nestin promotes the phosphorylation-dependent dissasembly of vimentin intermediate filaments during mitosis. Mol Biol Cell 14:1468–1478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke PR, Williams HI (1975) Ossification in extradural fat in Paget’s disease of the spine. Br J Surg 62:571–572

    CAS  PubMed  Google Scholar 

  • Couri CE, Voltarelli JC (2009) Stem cell therapy for type 1 diabetes mellitus: a review of recent clinical trials. Diabetol Metab Syndr 1–19

    Google Scholar 

  • Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350(13):1353–1356

    CAS  PubMed  Google Scholar 

  • Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocaña A, Vasavada R, Stewart AF (2006) Molecular control of cell cycle progression in the pancreatic β-cell. Endocr Rev 27:356–370

    CAS  PubMed  Google Scholar 

  • Dave SD, Vanikar AV, Trivedi HL (2012) Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue. Indian J Endocrinol Metab 16(1):S65–S69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dave SD, Trivedi HL, Chooramani SG, Chandra T (2013a) Management of type 1 diabetes mellitus using in vitro autologous adipose tissue trans-differentiated insulin-making cells. BMJ Case Rep. doi:10.1136/bcr-2013-200226

    Google Scholar 

  • Dave SD, Vanikar AV, Trivedi HL (2013b) Extrinsic factors promoting in vitro differentiation of insulin-secreting cells from human adipose tissue-derived mesenchymal stem cells. Appl Biochem Biotechnol 170:962–971

    CAS  PubMed  Google Scholar 

  • Dave SD, Vanikar AV, Trivedi HL, Thakkar UG, Chooramani S, Chandra T (2013c) Novel therapy for type 1 diabetes mellitus: infusion of in vitro generated insulin-secreting cells. Clin Exp Med

    Google Scholar 

  • Dave SD, Vanikar AV, Trivedi HL (2014) In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1. Cytotechnology 66(2):299–307

    CAS  PubMed  Google Scholar 

  • Dicke KA, van Bekkum DW (1973) Transplantation of haemopoietic stem cell (HSC) concentrates for treatment of immune deficiency disease. Adv Exp Med Biol 29:337–342

    CAS  PubMed  Google Scholar 

  • Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J et al (2004) Recurrent gain of 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    CAS  PubMed  Google Scholar 

  • Eberhardt M, Salmon P, von Mach MA, Hengstler JG, Brulport M, Linscheid P et al (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345:1167–1176

    CAS  PubMed  Google Scholar 

  • Elliott RB, Berryman CC, Crossley JR, James AG (1981) Partial preservation of pancreatic beta-cell function in children with diabetes. Lancet 19:631–632

    Google Scholar 

  • Ende N, Chen R, Reddi AS (2004a) Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 325(3):665–669

    CAS  PubMed  Google Scholar 

  • Ende N, Chen R, Reddi AS (2004b) Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochem Biophys Res Commun 321(1):168–171

    CAS  PubMed  Google Scholar 

  • Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yahez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycaemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14:631–640

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    CAS  PubMed  Google Scholar 

  • Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306:2261–2264

    CAS  PubMed  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    CAS  PubMed  Google Scholar 

  • Green A, Sjølie AK, Eshøj O (1996) Trends in the epidemiology of IDDM during 1970–2020 in Fyn County, Denmark. Diabetes Care 19:801–806

    CAS  PubMed  Google Scholar 

  • Guiting L, Guifang W, Gang L, Li-Jun Y, Lung-Ji C et al (2009) Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 18(10):1399–1406

    Google Scholar 

  • Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592

    CAS  PubMed  Google Scholar 

  • Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B et al (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2:763–770

    Google Scholar 

  • Holditch SJ, Terzic A, Ikeda Y (2014) Concise review: pluripotent stem cell-based regenerative applications for failing β-cell function. Stem Cells Transl Med 3(5):653–661

    CAS  PubMed  Google Scholar 

  • Hussain MA, Theise ND (2004) Stem-cell therapy for diabetes mellitus. Lancet 364(9429):203–205

    PubMed  Google Scholar 

  • Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M (2014) Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 41(7):4783–4794

    CAS  PubMed  Google Scholar 

  • Kajiyama H, Hamazaki TS, Tokuhara M, Masui S, Okabayashi K, Ohnuma K et al (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 54(4):699–705

    CAS  PubMed  Google Scholar 

  • Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837–2844

    CAS  PubMed  Google Scholar 

  • Kaufman RJ (2011) Beta-cell failure, stress, and type 2 diabetes. N Engl J Med 365(20):1931–1933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, KlĂĽter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    CAS  PubMed  Google Scholar 

  • Kögler G, Sensken S, Airey JA, Trapp T, MĂĽschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    PubMed Central  PubMed  Google Scholar 

  • Lau HT, Yu M, Fontana A, Stoeckert CJ (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109–112

    CAS  PubMed  Google Scholar 

  • Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/SCID mice. Proc Natl Acad Sci USA 103:17438–17443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B (2004) In vitro directed differentiation of mouse embryonic stem cells into insulin producing cells. Diabetologia 47:1442–1451

    CAS  PubMed  Google Scholar 

  • Lin DG, Kenny DJ, Barrett EJ, Lekic P, McCulloch CA (2000) Storage conditions of avulsed teeth affect the phenotype of cultured human periodontal ligament cells. J Periodontal Res 35:42–50

    CAS  PubMed  Google Scholar 

  • Lipton R, LaPorte RE, Becker DJ, Dorman JS, Orchard TJ, Atchison J, Drash AL (1990) Cyclosporin therapy for prevention and cure of IDDM epidemiological perspective of benefits and risks. Diabetes Care 13(7):776–784

    CAS  PubMed  Google Scholar 

  • Liu M, Han ZC (2008) Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 12(4):1155–1168

    CAS  PubMed  Google Scholar 

  • Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026

    CAS  PubMed  Google Scholar 

  • LĂĽ P, Liu F, Yan L, Peng T, Liu T, Yao Z et al (2007) Stem cells therapy for type 1 diabetes. Diabetes Res Clin Pract 78:1–7

    PubMed  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    CAS  PubMed  Google Scholar 

  • Mackenzie TC, Flake AW (2001) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 27:1–4

    Google Scholar 

  • Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9:841–848

    CAS  PubMed  Google Scholar 

  • Mathis D, Vence L, Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414:792–798

    CAS  PubMed  Google Scholar 

  • Melton DA (2006) Reversal of type 1 diabetes in mice. N Engl J Med 355(1):89–90

    CAS  PubMed  Google Scholar 

  • Morton RA, Geras-Raaka E, Wilson LM, Raaka BM, Gershengorn MC (2007) Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol 270:87–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for treatment of type I diabetes. Lab Invest 84:607–617

    CAS  PubMed  Google Scholar 

  • Orlando G, Gianello P, Salvatori M, Stratta RJ, Soker S, Ricordi C et al (2014) Cell replacement strategies aimed at reconstitution of the beta-cell compartment in type 1 diabetes. Diabetes 63(5):1433–1444

    CAS  PubMed  Google Scholar 

  • Pearson TC, Alexander DZ, Hendrix R, Elwood ET, Linsley PS, Winn KJ et al (1996) CTLA4-Ig plus bone marrow induces long-term allograft survival and donor-specific unresponsiveness in the murine model. Evidence for hematopoietic chimerism. Transplantation 61:997–1004

    CAS  PubMed  Google Scholar 

  • Pessina A, Eletti B, Croera C, Savalli N, Diodovich C, Gribaldo L (2004) Pancreas developing markers expressed on human mononucleated umbilical cord blood cells. Biochem Biophys Res Commun 323:315–322

    CAS  PubMed  Google Scholar 

  • Phimister EG, Drazen JM (2004) Two fillips for human embryonic stem cells. N Engl J Med 350(13):1351–1352

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    CAS  PubMed  Google Scholar 

  • Posselt AM, Barker CF, Tomaszewski JE, Markmann JF, Choti MA, Naji A (1990) Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 249:1293–1295

    CAS  PubMed  Google Scholar 

  • Posselt AM, Odorico JS, Barker CF, Naji A (1992) Promotion of pancreatic islet allograft survival by intrathymic transplantation of bone marrow. Diabetes 41:771–775

    CAS  PubMed  Google Scholar 

  • Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278–282

    CAS  PubMed  Google Scholar 

  • Rossini AA (2004) Autoimmune diabetes and the circle of tolerance. Diabetes 53:267–275

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    CAS  PubMed  Google Scholar 

  • Schatz D, Gale EA, Atkinson MA (2003) Why can’t we prevent type 1 diabetes? Maybe it’s time to try a different combination. Diabetes Care 26(12):3326–3328

    PubMed  Google Scholar 

  • Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton D, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB et al (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22:1115–1124

    CAS  PubMed  Google Scholar 

  • Seeberger KL, Dufour JM, Shapiro AM, Lakey JR, Rajotte RV, Korbutt GS (2006) Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 86:141–153

    CAS  PubMed  Google Scholar 

  • Shackelford GD, Barton LL, McAlister WH (1975) Calcified subcutaneous fat necrosis in infancy. J Can Assoc Radiol 26:203–207

    CAS  PubMed  Google Scholar 

  • Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336

    CAS  PubMed  Google Scholar 

  • Skyler JS (1987) Immune intervention studies in insulin-dependent diabetes mellitus. Diabetes Metab Rev 3:1017–1035

    CAS  PubMed  Google Scholar 

  • Soria B, Martin F, Andreu E, Sanchez-AndrĂ©s JV, Nacher V, Montana E (1996) Diminished fraction of blockable ATP-sensitive K + channels in islets transplanted into diabetic mice. Diabetes 45:1755–1760

    CAS  PubMed  Google Scholar 

  • Soria B, Roche E, Berná G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin induced diabetic mice. Diabetes 49:157–162

    CAS  PubMed  Google Scholar 

  • Soria B, Bedoya FJ, Martin F (2005) Gastrointestinal stem cells. I. Pancreatic stem cells. Am J Physiol Gastrointest Liver Physiol 289(2):G177–G180

    CAS  PubMed  Google Scholar 

  • Stainier D (2006) No stem cell is an islet (yet). N Engl J Med 354(5):521–523

    CAS  PubMed  Google Scholar 

  • Starzl TE (2001) The “privileged” liver and hepatic tolerogenicity. Liver Transpl 7(10):918–920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L et al (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl) 120:771–776

    CAS  Google Scholar 

  • Suzuki A, Nakauchi H, Taniguchi H (2004) Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53:2143–2152

    CAS  PubMed  Google Scholar 

  • Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U et al (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagons-expressing cells. Biochem Biophys Res Commun 341(4):1135–1140

    CAS  PubMed  Google Scholar 

  • Trivedi HL, Vanikar AV, Thakker U, Firoze A, Dave SD, Patel CN et al (2008) Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc 40(4):1135–1139

    CAS  PubMed  Google Scholar 

  • Urbán VS, Kiss J, Kovács J, GĂłcza E, Vas V, Monostori E et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253

    PubMed  Google Scholar 

  • Vanikar AV, Dave SD, Thakkar UG, Trivedi HL (2010) Co-transplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010, 582382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vija L, Farge D, Gautier JF, Vexiau P, Dumitrache C, Bourgarit A et al (2009) Mesenchymal stem cells: stem cell therapy perspectives for type 1 diabetes. Diabetes Metab 35(2):85–93

    CAS  PubMed  Google Scholar 

  • Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F et al (2007) Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297:1568–1576

    CAS  PubMed  Google Scholar 

  • Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F et al (2008) Autologous hematopoietic stem cell transplantation in type 1 diabetes. ***Ann NY Acad Sci 1150:220–229

    PubMed  Google Scholar 

  • Wu GD, Nolta JA, Jin YS, Barr ML, Yu H, Starnes VA, Cramer DV (2003) Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 75:679–685

    PubMed  Google Scholar 

  • Wu XH, Liu CP, Xu KF, Mao XD, Zhu J, Jiang JJ et al (2007) Reversal of hyperglycaemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol 13:3342–3349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, D’Hoker J, StangĂ© G, BonnĂ© S, De Leu N, Xiao X et al (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207

    CAS  PubMed  Google Scholar 

  • Yan-Hua H, De-Quan W, Gao F, Li G-D, Yao L, Zhang X-C (2009) A secretory function of human insulin-producing cells in vivo. Hepatobiliary Pancreat Dis Int 8(3):255–260

    Google Scholar 

  • Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M et al (1999) Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J Exp Med 190:1329–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21(11):1783–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

I am thankful of Dr. Vivek Kute for helping me in literature survey and reviewing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shruti Dave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dave, S. (2015). Stem Cells Derived Insulin-Secreting Cells for Insulin-Dependent Diabetes Mellitus: Exploiting Laboratory Discoveries. In: Faintuch, J., Faintuch, S. (eds) Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-319-13126-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13126-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13125-2

  • Online ISBN: 978-3-319-13126-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics