mHealthDroid: A Novel Framework for Agile Development of Mobile Health Applications

  • Oresti Banos
  • Rafael Garcia
  • Juan A. Holgado-Terriza
  • Miguel Damas
  • Hector Pomares
  • Ignacio Rojas
  • Alejandro Saez
  • Claudia Villalonga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8868)

Abstract

Mobile health is an emerging field which is attracting much attention. Nevertheless, tools for the development of mobile health applications are lacking. This work presents mHealthDroid, an open source Android implementation of a mHealth Framework designed to facilitate the rapid and easy development of biomedical apps. The framework is devised to leverage the potential of mobile devices like smartphones or tablets, wearable sensors and portable biomedical devices. The framework provides functionalities for resource and communication abstraction, biomedical data acquisition, health knowledge extraction, persistent data storage, adaptive visualization, system management and value-added services such as intelligent alerts, recommendations and guidelines.

Keywords

mHealth framework mobile health digital health portable sensors wearable sensors biomedical sensors health devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taking the Pulse®(US). Technical report, Manhattan Research (2014)Google Scholar
  2. 2.
    Burns, A., et al.: SHIMMER. A Wireless Sensor Platform for Noninvasive Biomedical Research. IEEE Sensors Journal 10(9), 1527–1534 (2010)CrossRefGoogle Scholar
  3. 3.
    Gaggioli, A., et al.: A Mobile Data Collection Platform for Mental Health Research. Pers. Ubi. Comp. 17(2), 241–251 (2013)CrossRefGoogle Scholar
  4. 4.
    Prasad, A., et al.: Provenance framework for mHealth. In: 5th Int. Conf. on Comm. Syst. and Net, pp. 1–6 (2013)Google Scholar
  5. 5.
    Chen, P.H., Chen, H.M.: Framework design-integrating an android open platform with multi-interface biomedical modules for physiological measurement. Journal of Conv. Infor. Tech. 7(12), 310–319 (2012)Google Scholar
  6. 6.
    Banos, O., et al.: Physiodroid: combining wearable health sensors and mobile devices for a pervasive, continuous and personal monitoring. The Scientific World Journal (2014)Google Scholar
  7. 7.
    Oster, J., et al.: Open source Java-based ECG analysis software and Android app for Atrial Fibrillation screening. In: Comp. in Cardiology, pp. 731–734 (2013)Google Scholar
  8. 8.
    Oresko, J.J., et al.: A Wearable Smartphone-Based Platform for Real-Time Cardiovascular Disease Detection Via Electrocardiogram Processing. IEEE Trans. on Inf. Tech. in Biomed. 14(3), 734–740 (2010)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Habib, M.A., et al.: Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors 14(4), 7181–7208 (2014)CrossRefGoogle Scholar
  11. 11.
    Bsoul, M., et al.: Apnea MedAssist: Real-time Sleep Apnea Monitor Using Single-Lead ECG. IEEE Trans. on Inf. Tech. in Biomed. 15(3), 416–427 (2011)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Khalifian, S., et al.: Medical student appraisal: searching on smartphones. Appl. Clinical Inf. 4(1), 53–60 (2012)CrossRefGoogle Scholar
  14. 14.
    Mazilu, S., et al.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 6th Int. Conf. on Perv. Comp. Tech. for Healthcare, pp. 123–130 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Oresti Banos
    • 1
  • Rafael Garcia
    • 1
  • Juan A. Holgado-Terriza
    • 1
  • Miguel Damas
    • 1
  • Hector Pomares
    • 1
  • Ignacio Rojas
    • 1
  • Alejandro Saez
    • 1
  • Claudia Villalonga
    • 1
  1. 1.Research Center for Information and Communications Technologies of the University of Granada (CITIC-UGR)GranadaSpain

Personalised recommendations